

Cultural, Social and Technical Mathematics
 Secondary IV

STUDY GUIDE -

 ANSWERS

This Study Guide has been developed by teachers and consultants with the aim of helping students prepare for the MELS Uniform Examination in Secondary IV CST Mathematics. The production of this guide was possible through funding by an Anglophone community MELS Success Project.

Please note that this document is a "work in progress" and it will be reviewed during the 20142015 school year. Corrections and suggestions should be sent to your school board consultant.

Teacher Development Team:

Annick Gaillard
Saadia Ashraf
Rick Tomalty
Daniel Maag
Carmela Nassif
Paul Masson
Teresa Groenewegen-Caza
Rafi Khan

School Board Consultants:

Sandra Frechette (project coordinator)
Franca Redivo
Peter Clark
Richard Drapeau

Document Formatting:

Heather Hopkins

Riverside School Board
Lester B. Pearson School Board
Lester B. Pearson School Board
Lester B. Pearson School Board
Sir Wilfrid Laurier School Board
Sir Wilfrid Laurier School Board
New Frontiers School Board
Western Quebec School Board

Riverside School Board
Lester B. Pearson School Board
Sir Wilfrid Laurier School Board
New Frontiers School Board

Riverside School Board

This document may be reproduced and distributed for educational, non-commercial purposes only.

Table of Contents

1.1 Points and Segments in the Cartesian Plane 1
1.2 Lines in the Cartesian Plane 9
1.3 Systems of Equations 19
1.4 Half-Planes in the Cartesian Plane 25
2.1 Diagrams and Statistics (Dispersion, Deviation, Stem and Leaf...) 33
2.2 Qualitative Interpretation of Correlation 41
2.3 Quantitative Interpretation of Correlation 47
2.4 Interpretation of Linear Correlation 55
3.1 Congruent Triangles 63
3.2 Similar Triangles 71
3.3 Metric Relations (Right Triangles) 79
4.1 Real Functions 87
4.2 Second-Degree Polynomial Function 95
4.3 Exponential Function 103
4.4 Step, Periodic and Piecewise Functions 111
5.1 Trigonometric Ratios 119
5.2 Finding Missing Measurements 127
5.3 Calculating the Area of any Triangle 135
6.2 Subjective Probability and Odds 143
6.3 Mathematical Expectation. 149

1.1 Points and Segments in the Cartesian Plane

Answer and Solution:

Find the rate of change between the two points either with the formula or visually from the graph:

- Formula from a table of values (or just the points):

x	y
10	60
90	20

$$
\frac{20-60}{90-10}=\frac{-40}{80}=-\frac{1}{2}
$$

- Rise over run from the diagram: $\frac{\text { rise }}{\text { run }}=\frac{-40}{80}=-\frac{1}{2}$

A) Incorrect: would be "run over rise"
B) Correct
C) Incorrect: Segment $A B$ has a negative slope but $\frac{1}{2}$ indicates a positive slope
D) Incorrect: This is the positive version of "run over rise" so incorrect on two counts.

Suggested Strategies:

I) Recognize the table of values is a series of coordinates... you need two sets to find the rule.
II) Choose any coordinate pair and label them x_{1}, y_{1} and x_{2}, y_{2}
III) Find the rate of change between these coordinate pairs using the formula: slope $=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
IV) Plug the rate of change into the formula $y=a x$ $+b$
V) Substitute any of the (x, y) coordinate pairs from the table into the equation and solve for the initial value (b)
VI) If your rate of change or initial value is in fraction form, multiply each term by the LCM (least common multiple) of the two denominators
VII) Keeping in mind the signs, move all of the terms to one side of the equal sign.

The answer is B.

Additional Resources:

Visions Volume 1, Section 1.1, p. 15 (Slope of a Segment)
Khan Academy video: http://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-relationships-functions/cc-8th-slope/v/slope-of-a-line
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Slope

Answer and Solution:

Midpoint formula: $(18,30):\left(\frac{\left(6+x_{2}\right)}{2}, \frac{\left(18+y_{2}\right)}{2}\right)$

$$
\begin{array}{cl}
18=\frac{6+x}{2} & 30=\frac{18+y}{2} \\
36=6+x & 60=18+y \\
30=x & 42=y
\end{array}
$$

Suggested Strategies:

Use either the mid-point formula, remembering that you will have some algebra to do, or sketch it and see which answer makes sense.

The only answer that meets both conditions is $D(30,42)$.
A) $(-6,6)$ This is the answer you get if you mix up the endpoint and the midpoint.
B) $(12,24)$ This is the answer you get if you just plug the points into the midpoint formula.
C) $(24,12)$ This is if you just plug in the points into the midpoint formula and mix up the x and y.
D) $(30,42)$ This is the correct answer.

Additional Resources:

Visions Volume 1, Section 1.1, p. 16 (Point of Division)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/e/midpoint formula

Answer and Solution:

Division point formula:

$$
\left(x_{p}, y_{p}\right)=\left(x_{1}+\frac{a}{b}\left(x_{2}-x_{1}\right), y_{1}+\frac{a}{b}\left(y_{2}-y_{1}\right)\right)
$$

With $a=3, b=5, x_{1}=25, y_{1}=75, x_{2}=10, y_{2}=30$
OR $a=2, b=5, x_{1}=10, y_{1}=30, x_{2}=25, y_{2}=75$
Example for the x-coordinate with the first choice:

$$
\begin{aligned}
& x_{p}=25+\frac{3}{5}(10-25) \\
& x_{p}=25+\frac{3}{5}(-15) \\
& x_{p}=25-9=16
\end{aligned}
$$

Repeat for the y-coordinate.
Here is the sketch:

A) Incorrect: this is the answer you get if you use $\frac{3}{8}$ instead of $\frac{3}{5}$.
B) Correct
C) Incorrect: this is the answer you get if you calculate the ratio from the wrong end (A to B instead of B to A).
D) Incorrect: this is the answer you get if you use $\frac{3}{8}$ instead of $\frac{3}{5}$ and went from the wrong end.

The answer is B.

Suggested Strategies:

- Be careful because the problem is stating the distance from B to A, not A to B. You can see that the distractors assume you might make this mistake.
- Determine whether the ratio given is part to part or part to whole. In this case it is part to whole. You can see that the distractors assume you might make the mistake of interpreting it as a part to part ratio.

You can solve the problem by using the distance formula - paying close attention to where you plug in your points. Remember the B to A. You could also use the other part of the ratio and use $\frac{2}{5}$ of the way from A to B. Don't let yourself be confused.

You can also sketch the points and see which answer(s) make sense.

Additional Resources:

Visions Volume 1, Section 1.1, p. 16 (Point of Division)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/e/midpoint formula

Answer and Solution:

Division point formula:

$$
\left(x_{p}, y_{p}\right)=\left(x_{1}+\frac{\text { part }}{\text { whole }}\left(x_{2}-x_{1}\right), y_{1}+\frac{\text { part }}{\text { whole }}\left(y_{2}-y_{1}\right)\right)
$$

With $\frac{\text { part }}{\text { whole }}=\frac{4}{4+1}=\frac{4}{5}$
And $x_{1}=200, y_{1}=800, x_{2}=1200, y_{2}=1600$

$$
\begin{aligned}
& x_{p}=200+\frac{4}{5}(1200-200) \\
& x_{p}=200+\frac{4}{5}(1000) \\
& x_{p}=200+800 \\
& x_{p}=1000 \\
& y_{p}=800+\frac{4}{5}(1600-800) \\
& y_{p}=800+\frac{4}{5}(800) \\
& y_{p}=800+640 \\
& y_{p}=1440
\end{aligned}
$$

Suggested Strategies:

Notice the keywords to see what kind of problem it is:

- Line, point
- Divides
- Ratio
- Coordinates

This is a division point question.

Determine whether the ratio given is part to part or part to whole. In this case it is part to part which means you'll add the numbers to create the fraction in the formula.

Pay attention to the end from which the ratio is being measured - in this case from point A.

It always helps to make a sketch of the situation.

Jim's house is situated at (1000, 1440).

Additional Resources:

Visions Volume 1, Section 1.1, p. 16 (Point of Division)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/e/midpoint formula

Answer and Solution:

$$
d(A, C)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

A $(-30,40) \& C(20,58)$

$$
\begin{aligned}
& d(A, C)=\sqrt{(20-(-30))^{2}+(58-40)^{2}} \\
& d(A, C)=\sqrt{(50)^{2}+(18)^{2}} \\
& d(A, C)=\sqrt{2500+324} \\
& d(A, C)=\sqrt{2824} \\
& d(A, C) \approx 53.1413 \mathrm{~m}
\end{aligned}
$$

$B(90,35) \& C(20,58)$

$$
\begin{aligned}
& d(B, C)=\sqrt{(20-90)^{2}+(58-35)^{2}} \\
& d(B, C)=\sqrt{(-70)^{2}+(23)^{2}} \\
& d(B, C)=\sqrt{4900+529} \\
& d(B, C)=\sqrt{5429} \\
& d(B, C) \approx 73.6817 \mathrm{~m}
\end{aligned}
$$

$$
73.6817-53.1413=20.5404
$$

Suggested Strategies:

The key word here is "longer" which implies length. And with the Cartesian plane (coordinates) as part of the question we'll want to use the distance formula.

Determine the distances we need: $A C$ and $B C$ (we don't need $A B$).

And then subtract to find the difference between the two distances calculated.

$\overline{B C}$ is $\mathbf{2 0 . 5 4} \mathbf{~ m}$ longer than $\overline{A C}$.

Additional Resources:

Visions Volume 1, Section 1.1, p. 15 (Distance between Two Points)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/midpoint-formula

Answer and Solution:

Distance between Bill's house and the water tower:
Bill's house: $(-400,200) \quad$ Water tower: $(0,1100)$

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
d=\sqrt{(0--400)^{2}+(1100-200)^{2}} \\
d=\sqrt{(400)^{2}+(900)^{2}} \\
d=\sqrt{160000+810000} \\
d=\sqrt{970000} \\
d \approx \mathbf{9 8 4 . 8 8}
\end{gathered}
$$

Coordinates of Alan's house:
Bill's house: $(-400,200)$
School: $(200,400)$, the midpoint

$$
\begin{array}{ll}
\frac{x_{1}+x_{2}}{2}=x_{m} & \frac{y_{1}+y_{2}}{2}=y_{m} \\
\frac{-400+x_{2}}{2}=200 & \frac{200+y_{2}}{2}=400 \\
-400+x_{2}=400 & 200+y_{2}=800 \\
x_{2}=800 & y_{2}=600
\end{array}
$$

Alan's house: $(800,600)$

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
d=\sqrt{(0-800)^{2}+(1100-600)^{2}} \\
d=\sqrt{(-800)^{2}+(500)^{2}} \\
d=\sqrt{640000+250000} \\
d=\sqrt{890000} \\
d \approx \mathbf{9 4 3 . 4 0}
\end{gathered}
$$

Alan is correct; their houses are not same distance from the water tower.

Suggested Strategies:

Begin by transferring information from the text onto the diagram.

To answer this question you have to calculate the distance between each of the houses and the water tower. For that, you need the three sets of coordinates; Bill's house, Alan's house and the water tower.

You are given the coordinates of the water tower (0,1100) and Bill's house (-400, 200).

Using the coordinates of Bill's house and the school, you can determine the coordinates of Alan's house.

Additional Resources:

Visions Volume 1, Section 1.1, pp. 15-16
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/midpoint-formula

1.2 Lines in the Cartesian Plane

Answer and Solution:

Formula for a linear equation: $y=a x+b$
Coordinates used to find the rule:
(-10.2, 53.7)
(-6.4, 40.4)
slope $(a)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
slope $(a)=\frac{40.4-53.7}{-6.4-(-10.2)}=\frac{-13.3}{3.8}=-3.5$
$y=a x+b$
$y=-3.5 x+b$
$40.4=-3.5(-6.4)+b$
$40.4=22.4+b$
$18=b$
$y=-3.5 x+18$

Convert slope from decimal form to fraction form and multiply each term by the denominator
$y=\frac{-7}{2} x+18$
$2 y=-7 x+36$
$2 y+7 x-36=0$
$7 x+2 y-36=0$

Suggested Strategies:

I) Recognize the table of values is a series of coordinates... you need two sets to find the rule.
II) Choose any coordinate pair and label them x_{1}, y_{1} and x_{2}, y_{2}
III) Find the rate of change between these coordinate pairs using the formula: slope $=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
IV) Plug the rate of change into the formula $y=a x+$ b
V) Substitute any of the (x, y) coordinate pairs from the table into the equation and solve for the initial value (b)
VI) If your rate of change or initial value is in fraction form, multiply each term by the LCM (least common multiple) of the two denominators
VII) Keeping in mind the signs, move all of the terms to one side of the equal sign.

The answer is D.

Additional Resources:

Visions Volume 1, Section 1.2, p. 26 (Equation of Line from Slope and Intercepts)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/more-analytic-geometry/v/algebra--slope-and-y-intercept-intuition
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Point-Slope Form of a Line
- Slope-Intercept Form of a Line

Answer and Solution:

Find the slope of $4 x+3 y+12=0$
$3 y=-4 x-12$
$\frac{3 y}{3}=\frac{-4 x-12}{3}$
$y=\frac{-4}{3} x-4 \quad$ the slope is $\frac{-4}{3}$
Find the perpendicular slope: $\frac{a}{b} \rightarrow \frac{-b}{a}$
The perpendicular slope is $\frac{3}{4}$ (options B and D are 'out')
Convert options A and C to slope-intercept form and compare slopes.
Option A
$3 x+4 y-8=0$
$4 y=-3 x+8$
$\frac{4 y}{4}=\frac{-3 x+8}{4}$,

The slope is not $\frac{3}{4}$, option A is wrong.

Option C

$-3 x+4 y-8=0$
$4 y=3 x+8$
$\frac{4 y}{4}=\frac{3 x+8}{4}$

The slope is equal to $\frac{3}{4}$, option C is correct.

The answer is C.

Suggested Strategies:

I) The word perpendicular in this problem should immediately cause you to write the negative reciprocal rule for perpendicular slopes: $\frac{a}{b} \rightarrow \frac{-b}{a}$
II) Start by converting the equation from 'general' form to 'slopeintercept' form in order to get a better look at the slope.
III) Find the negative reciprocal of the slope from the equation given in the problem. This is the slope we are looking for in our multiple-choice answers.
IV) Remember that we only care about finding a perpendicular line in this problem, so we only need to worry about the slopes. Ignore the initial values altogether... they are only distractors here.

Additional Resources:

Visions Volume 1, Section 1.2, p. 27 (Perpendicular Line)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/more-analytic-geometry/e/line relationships

Answer and Solution:

Set the ' y ' value to 0 and solve for x.
$2 x+0+6=0$
$2 x+6=0$
$2 x=6$
$x=\frac{-6}{2}$
$x=-3$

Set the ' y ' value to 0 and solve for x.
$0=\frac{-2}{3} x-2$
$2=\frac{-2}{3} x$
$2\left(\frac{3}{-2}\right)=x$
$-3=x$

Suggested Strategies:

I) Remember that the x-intercept is the point on a graph where the line crosses the x-axis ($y=0$)
II) Set $y=0$ and solve for x.

The answer is A.

Additional Resources:

Visions Volume 1, Section 1.2, p. 26 (Equation of a Line)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/more-analytic-geometry/v/algebra--equation-of-a-line

Answer and Solution:

Convert the equation from general form to y-intercept form
$3 x-4 y-24=0$
$-4 y=-3 x+24$
$\frac{-4 y}{-4}=\frac{-3 x+24}{-4}$
$y=\frac{3 x}{4}-6$, the slope of the parallel line must be $\frac{3}{4}$
$y=a x+b$
$y=\frac{3}{4} x+b$
$7=0.75(-8)+b$
$7=-6+b$
$13=b$
$y=\frac{3}{4} x+13$

Convert the rule from slope-intercept form to general form by multiplying by the denominator
(4) $y=(4) \frac{3}{4} x+(4) 13$
$4 y=3 x+52$
$4 y-3 x-52=0$
$-3 x+4 y-52=0$,

Suggested Strategies:

I) Remember that parallel lines always have the same slope.
II) Convert the rule in the question from 'general' form to 'slope-intercept' form in order to find the slope. This slope will be the same in your new parallel line.
III) Plug the parallel slope (a) into the formula $y=a x+b$
IV) Substitute the coordinates of point $P(-8,7)$ into the new equation and solve for the initial value (b).
V) Convert your answer from slope-intercept form to general form and look for a match.
VI) You can also convert the rules from general form into slope-intercept form in the multiple choice section.

The answer is B.

Additional Resources:

Visions Volume 1, Section 1.2, p. 27 (Parallel Line)
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/parallel-line-equation

Answer and Solution:

Convert the equation from general form to y-intercept
$-4 x+5 y-10=0$
$5 y=4 x+10$
$\frac{5 y}{5}=\frac{4 x+10}{5}$
$y=\frac{4 x}{5}+2$, the slope of the line is $\frac{4}{5}$
Find the perpendicular slope:
$\frac{a}{b} \rightarrow \frac{-b}{a}, \frac{4}{5} \rightarrow \frac{-5}{4}$, the perpendicular slope is $\frac{-5}{4}$
$y=a x+b$
$y=\frac{-5}{4} x+b$
$15=-1.2(12)+b$
$15=-14.4+b$
$30=b$
$y=\frac{-5}{4} x+30$
Set the ' y ' value to 0 and solve for x.
$0=\frac{-5}{4} x+30$
$-30=\frac{-5}{4} x$
$-30\left(\frac{4}{-5}\right)=x$
$24=x$
The x-intercept of the line perpendicular to L that passes through P is $(24,0)$.

Suggested Strategies:

I) Remember that an x intercept is the point at which a line crosses the x-axis. The y-value of this coordinate must be equal to $0(y=0)$ at this point.
II) Start by converting the equation from 'general' form to 'slope-intercept' form in order to get a better look at the slope.
III) The word perpendicular in this problem should immediately cause you to write the negative reciprocal rule for perpendicular slopes: $\frac{a}{b} \rightarrow \frac{-b}{a}$.
IV) Since we are looking for the line that is perpendicular to
$-4 x+5 y-10$, we'll need the negative reciprocal
$\left(\frac{-b}{a}\right)$ of the slope from the equation given in the problem.
V) Use the perpendicular slope in a new $' y=a x+b$ ' rule.
VI) Substitute the coordinates of point P $(12,15)$ into the new equation and solve for the initial value (b).
VII) Once you've got your rule for the perpendicular line finished, find the x intercept by making $y=$ 0 and solving for x.

Additional Resources:

Visions Volume 1, Section 1.2, pp. 26-27
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/more-analytic-geometry/v/parallel-line-equation

Answer and Solution:

$$
y=\frac{-3 x}{4}+6.5
$$

Line 1 :

$$
y=\frac{4 x}{3}-3
$$

Line 2 :

$$
a=\frac{-3}{4}
$$

Substitute point $(2,5)$ in for the x and y to solve for " b ".

$$
\begin{aligned}
& y=\frac{-3 x}{4}+b \\
& y=\frac{-3(2)}{4}+b \\
& 5=\frac{-6}{4}+b \\
& b=5+\frac{3}{2}=6.5 \\
& y=\frac{-3 x}{4}+6.5
\end{aligned}
$$

The equation of line 2 is $y=\frac{-3 x}{4}+6.5$

Additional Resources:

Visions Volume 1, p. 27 (Mathematical Knowledge Summary)
Khan Academy video: http://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/fast-systems-of-equations/v/solving-systems-of-equations-by-elimination
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Systems of Linear Equations

Answer and Solution:

Algebraically:

$$
\begin{aligned}
& \text { A) } x \text {-intercept } \\
& y=0 \\
& 8 x+6 y+12=0 \\
& 8 x+6(0)+12=0 \\
& 8 x=-12 \\
& x=\frac{-12}{8}=\frac{-3}{2} \\
& x=\frac{-3}{2}
\end{aligned}
$$

B) y-intercept
$x=0$
$8(0)+6 y+12=0$
$6 y+12=0$
$6 y=-12$
$y=-12=-2$
6
$y=-2$

Graphically:

$$
8 x+6 y+12=0 \rightarrow y=-\frac{4}{3} x-2
$$

The x-intercept is $-\frac{3}{2}$.
The \mathbf{y}-intercept is $\mathbf{- 2}$.

Suggested Strategies:

When finding the intercepts, the other coordinate is 0 :
x-intercept means $y=0$ y-intercept means $x=0$.

You can also solve this question graphically by changing the equation into function form and plotting the y-intercept and slope.

Additional Resources:

Visions Volume 1, p. 26 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

Answer and Solution:

Find the coordinates of the point where the car breaks down

Division point $2 / 3$ of the way between A and B

$$
\text { Division point : }\left(x_{1}+\frac{a}{b}\left(x_{2}-x_{1}\right), y_{1}+\frac{a}{b}\left(y_{2}-y_{1}\right)\right)
$$

A ($\mathbf{- 2 4}, \mathbf{- 3 9}$)
B $(30,33)$

$$
\begin{gathered}
\left(-24+\frac{2}{3}(30-(-24)),-39+\frac{2}{3}(33-(-39))\right) \\
\left(-24+\frac{2}{3}(54),-39+\frac{2}{3}(72)\right)
\end{gathered}
$$

Call the position of the car point C

$$
C(12,9)
$$

Find the slope of the rule for the line the car travels
Formula for a linear equation: $\boldsymbol{y}=\boldsymbol{a x}+\boldsymbol{b}$
Coordinates used to find the rule:
A (-24,-39)
B $(30,33)$
slope $(a)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
slope $(a)=\frac{33-(-39)}{30-(-24)}=\frac{72}{54}=\frac{4}{3}$

Find the equation for the tow-truck's path

The tow-truck's path will be perpendicular (negative reciprocal slope) and passes through point $C(12,9)$, the car $\frac{a}{b} \rightarrow \frac{-b}{a}, \frac{4}{3} \rightarrow \frac{-3}{4}$, the tow-truck's slope is $\frac{-3}{4}$
$y=a x+b$, passing through $(12,9)$
$y=-\frac{3}{4} x+b$
$9=\frac{-3}{4}(12)+b$
$9=-9+b$
$18=b$

Suggested Strategies:

I) Recognize that the question is asking for a distance between two points, the car and the garage. This problem requires us to first find and then use those coordinates.
II) Start by using the division point formula to find the coordinates of the car when it breaks down.
III) Then find the coordinates of the garage,
a. we know that it is on the x-axis (so the y-coordinate is $=0$)
b. We know that it is on the path that is perpendicular to $A B$
IV) Find the slope of $A B$ so we can use its negative reciprocal to define the slope of the line between the car and the garage.
V) Plug the (x, y) coordinates of the car into the formula for the tow-truck's path, then solve for the initial value to complete the equation for the towtruck's path.
$y=\frac{-3}{4} x+18$

Find the coordinates of the Garage on the x -axis

Set the ' y ' value to 0 and solve for x.
$y=\frac{-3}{4} x+18$
$0=\frac{-3}{4} x+18$
$-18=\frac{-3}{4}$
$-18\left(\frac{4}{-3}\right)=x$
$24=x$
The coordinates of the garage are: $(24,0)$
Find the distance from the garage to the car.
Garage (24, 0)
Car $(12,9)$

$$
\begin{gathered}
\text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\text { distance }=\sqrt{(12-24)^{2}+(9-0)^{2}} \\
\text { distance }=\sqrt{(-12)^{2}+(9)^{2}} \\
\text { distance }=\sqrt{144+81} \\
\text { distance }=15
\end{gathered}
$$

$\mathrm{VI})$ Using the equation of the line for the towtruck's path, set the y coordinate to 0 (since the garage is on the x axis) and solve for x.
VII) Use the distance formula along with the coordinates of the car and garage to find your final answer.

Final answer: the distance the tow-truck must travel from the garage to the car is 15 km .

Additional Resources:

Visions Volume 1, Section 1.2, pp. 26-27
Visions Volume 1, Section 1.1, pp. 15-16

1.3 Systems of Equations

Answer and Solution:

$$
\begin{aligned}
& 2 x+3 y+6=0 \\
& y=\frac{-2 x-4}{3} \\
& 2 x+3\left(\frac{-2 x}{3}-4\right)+6=0 \\
& 2 x+-2 x-12+6=0 \\
& 2 x-2 x-6=0 \\
& 0 \neq 6
\end{aligned}
$$

Since the left side does not equal the right side there is no possible solution; if graphed you would see that the lines are parallel and never intersect.

ALTERNATE METHOD

$$
\begin{aligned}
& 2 x+3 y+6=0 \\
& y=\frac{-2 x-4}{3} \\
& 2 x+3 y+6=0 \\
& 3 y=-2 x-6 \\
& y=\frac{-2 x-6}{3} \\
& y=\frac{-2 x-2}{3}
\end{aligned}
$$

The slopes (a) are the same and the y-intercepts (b) are different; if graphed you would see that the lines are parallel and never intersect.

Suggested Strategies:

Solve the system.
Check to see if the slopes are the same;

- If not, there will be one solution;
- If the slopes are the same, check to see if the y-intercepts are the same
- If they are the same, there is an infinite number of solutions since they are the same line;
- If they are not, they are parallel lines and the system has no solution.

The answer is C.

Additional Resources:

Visions Volume 1, p. 40 (Mathematical Knowledge Summary)
Khan Academy video: http://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/fast-systems-of-equations/v/solving-systems-of-equations-by-elimination Explore Learning Gizmos, http://www.explorelearning.com/ look up: Systems of Linear Equations

Answer and Solution:

$2 x-5 y+12=0$
$x-3 y=4$
Substitution method (since it is easy to isolate x.)
$x-3 y=4$
$x=3 y+4$
$2 x-5 y+12=0$
$2(3 y+4)-5 y+12=0$
$6 y+8-5 y+12=0$
$y+20=0$
$y=-20$
$x=4+3 y$
$x=4+3(-20)$
$x=4-60$
$x=-56$
(-56, -20)
Check:
$2 x-5 y+12=0$
$2(-56)-5(-20)+12=0$
$-112+100+12=0 \quad$ True
$x-3 y=4$
$(-56)-3(-20)=4$
$-56+60=4$ True

Both are true, so $(-56,-20)$ is the correct solution.

The answer is C .

Suggested Strategies:

Method 1:

Solve the system of equations by the method of your choice - this one lends itself to substitution.

Method 2:

Check by substituting each possible answer into the two equations to verify which point is a possible solution.
(-41, -14)
$2 x-5 y+12=0$
$2(-41)-5(-14)+12=0$
$-82+70+12=0$
$0=0$
$x-3 y=4$
$-41-3(-14)=4$
$-41+52=4$
$11 \neq 4$
(-44, -20)
$2 x-5 y+12=0$
$2(-44)-5(-20)+12=0$
$-88+100+12=0$
$24 \neq 0$
(-56, -12)
$2 x-5 y+12=0$
$2(-56)-5(-12)+12=0$
$-112+60+12=0$
$-40 \neq 0$

Additional Resources:

Visions Volume 1, p. 39 (Mathematical Knowledge Summary)
Khan Academy video: http://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/fast-systems-of-equations/v/solving-systems-of-equations-by-elimination
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Systems of Linear Equations

Answer and Solution:
$x=$ cost of a chocolate chip cookie
$y=$ cost of a peanut butter cookie
$3 x+4 y=5.65$
$5 x+7 y=9.70$
$-5(3 x+4 y=5.65)$
$3(5 x+7 y=9.70)$
$-15 x-20 y=-28.25$
$15 x+21 y=29.10$
$y=0.85$
cost of a peanut butter cookie $=\$ 0.85$
A) 70 cents
B) 75 cents - is cost of chocolate chip cookies
C) 80 cents
D) 85 cents

Suggested Strategies:

Set up a system of equations and solve it.

- Define your variables
- Write your equations
- Choose a method (this one suggests
elimination method but the other methods work as well.)
- Interpret your answer correctly by seeing which variable represents the cost of the peanut butter cookie.

The answer is D.
Additional Resources:

Visions Volume 1, pp. 39-40 (Mathematical Knowledge Summary)
Khan Academy video: http://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/fast-systems-of-equations/v/solving-systems-of-equations-by-elimination
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Systems of Linear Equations

Answer and Solution:

$x=$ cost for long cabinet
$y=$ cost for short cabinet
Client A: $7 x+4 y+120=1840$
OR $7 x+4 y=1720$
Client B: $9 x+8 y+190=2630$
OR $9 x+8 y=2440$
Client C: $11 x+2 y+170=$?
By elimination method:

Step 1)	Step 2)
$-2(7 x+4 y=1720)$	$7 x+4 y=1720$
$9 x+8 y=2440$	$7(200)+4 y=1720$
	$1400+4 y=1720$
$-14 x-8 y=-3440$	$4 y=1720-1400$
$9 x+8 y=2440$	$4 y=320$
$-5 x=-1000$	$y=\underline{320}=80$
	4
$x=\underline{-1000}$	
-5	
$x=200$	
$x=200$	
$y=80$	

Client C: $11 x+2 y+170=$?
$11(200)+2(80)+170=$
$2200+160+170=2530$
\$2530

Client C is correct. His total cost will be lower than client B's, since it is $\mathbf{\$ 2 5 3 0}$ compared to $\mathbf{\$ 2 6 3 0}$.

Suggested Strategies:

This is a "system of equations" question.

In order to find the cost for Client C, you need to know how much each type of cabinet costs.

Use the information given for the other two clients to find those costs.

- Define your variables,
- Set up two equations in two unknowns,
- Solve the system,
- Use the solution to find the cost for Client C

Note: if you don't show any work and just check one of the boxes, you will get zero.

Additional Resources:

Visions Volume 1, pp. 39-40 (Mathematical Knowledge Summary)
Khan Academy video: http://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/fast-systems-of-equations/v/solving-systems-of-equations-by-elimination Explore Learning Gizmos, http://www.explorelearning.com/ look up: Systems of Linear Equations

1.4 Half-Planes in the Cartesian Plane

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/graphing-linear-inequalities/v/graphing-inequalities

Answer and Solution:

$$
-12.5 x+25 y-100<0
$$

Test $(0,0)$ to see if the origin is in the solution set (and shaded).

$$
\begin{gathered}
-12.5(0)+25(0)-100<0 \\
-100<0 \\
\text { True }
\end{gathered}
$$

Therefore the answer must be D.
A) Incorrect - shading not below the line
B) Incorrect - solid line
C) Incorrect - solid line
D) Correct - dashed line and shading below the line

The answer is D .

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: -http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/graphing-linear-inequalities/v/graphing-inequalities

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/graphing-linear-inequalities/v/graphing-inequalities

Answer and Solution:

$\mathrm{P}(14,24)$ and $4 x-2 y<8$

$$
\begin{aligned}
& 4(14)-2(24)<8 \\
& 56-48<8 \\
& 8<8
\end{aligned}
$$

Since 8 is not less than 8 , the statement is false and P is not in the solution set.

Suggested Strategies:

Check to see if that point, when plugged into the inequality, makes the statement true.

If it's true, it is a solution.
If it's false, it's not a solution.
\square Yes, P is a solution to the inequality.
® No, P is not a solution to the inequality.

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/graphing-linear-inequalities/v/graphing-inequalities

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/graphing-linear-inequalities/v/graphing-inequalities

Answer and Solution:

Juanita's inequalities:

1. $4 x<-3 y+72$
$3 y<-4 x+72$
$y<-\frac{4}{3} x+24$
2. $y<\frac{4}{3} x+6$
3. $y \geq 10$

There are $\mathbf{2 1}$ seats in the region of "the best seats".

Additional Resources:

Visions Volume 1, Section 1.4, pp. 49-50
Khan Academy video: http://www.khanacademy.org/math/algebra/linear-equations-and-
inequalitie/graphing-linear-inequalities/v/graphing-inequalities

2.1 Diagrams and Statistics (Dispersion, Deviation, Stem and Leaf...)

Answer and Solution:

1. Mean $=(21+21+21+23+23+23) \div 6$

Mean= 22
2. $|21-22|=|-1|=1$
$|21-22|=|-1|=1$
$|21-22|=|-1|=1$
|23-22|= 1
|23-22|=1
|23-22|= 1
3. Mean deviation $=(1+1+1+1+1+1) \div 6$

Mean deviation=1
A) 0 - if you didn't take the absolute value of the differences
B) $\mathbf{1}$ - correct
C) 2 - unlikely, but just in case you take the difference between the two repeated values
D) $\quad 6$ - if you forget to divide by 6

Specific Strategies:

1. Calculate the mean of the set of data.
2. Subtract the mean
from each value in the set of data and determine its absolute value. (Remember absolute values can't be negative.)
3. Calculate the mean of the deviations.

The answer is B.
Additional Resources:

Visions Volume 1, p. 81
http://www.wikihow.com/Calculate-Mean-Deviation-About-Mean-(for-Ungrouped-Data)

Answer and Solution:

I. The mean, median, and range are measures of central tendency. False - range is a measure of dispersion.
II. Percentile rank is a measure of dispersion. False - percentile is a measure of position.
III. The mean deviation and range are measures of dispersion. True.
IV. The mean deviation is a measure of position. False - mean deviation is a measure of dispersion.

Suggested Strategies:

It is important to remember your vocabulary. Instead of blindly calculating mean, range etc. Try to think about why you are doing them and what the result represents. This goes for any stats question.

Recall:

- The measures of central tendency are mean, median, and mode.
- The measures of position are percentile rank
- Range and mean deviation are measures of dispersion.

The answer is B.

Additional Resources:

Visions Volume 2, pp. 81-82
Khan Academy video: https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-probability-statistics/cc-7th-central-tendency/v/statistics-intro--mean--median-and-mode

Answer and Solution:

1. There are 42 values in the stem and leaf plot
2. Apply the formula: $\frac{\text { percentile }}{100} \times$ number of values

$$
\begin{gathered}
\frac{70}{100} \times 42 \\
0.70 \times 42 \\
29.4
\end{gathered}
$$

3. Always round down the result (round to 29).
4. The answer represents the POSITION from the bottom (lowest result) of the data value you wish to find.

| | Number of sit-ups | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 29th value | | | | | | | |
| is 51 | | | | | | | | |

A) This is the result when you make both mistakes as described in B) and D).
B) This is the result when you count from the wrong end.
C) This is correct.
D) This is the result when you round up instead of down - it's the $30^{\text {th }}$ position.

Answer and Solution:

1 - Answer using the formula:

$$
\frac{\text { number of data value below or equal to } x}{\text { total number of data values }} \times 100
$$

$$
\frac{146+3}{305} \times 100=\frac{149}{305} \times 100 \approx 48.85 \text { round up to } 49
$$

2 - Answer using the formula:

$$
\begin{aligned}
& \frac{\text { number of data values below } x+\frac{\text { number of data values equal to } x}{2}}{\text { total number of data values }} \times 100 \\
& \begin{aligned}
& \frac{146+\frac{3}{2}}{305} \times 100=\frac{146+1.5}{305} \times 100=\frac{147.5}{305} \times 100 \\
& \approx 48.36 \text { round up to } 49
\end{aligned}
\end{aligned}
$$

A) 47 - if you don't take into account the 3 values at 50
B) 48 - if you round down or don't take into account the 3 values at 50
C) 49 - correct
D) 50 - if you just take the value itself

Suggested Strategies:

The question is asking for percentile, so you need the formula which gives you the percentile of a data value.

Be careful:

Do not use the formula for finding a data value when the percentile is given!

Remember to round to the next whole number (always UP!)

The answer is C.

Additional Resources:

Visions Volume 1, Section 2.1, pp. 76-88

Answer and Solution:

It is suggested to organize your work in a table.

1. The mean of the set of data is 19.55 .
2. See the third column of the table.

Value	Mean	\|Difference of value from mean \|
41	19.55	21.45
17	19.55	2.55
25	19.55	5.45
9	19.55	10.55
20	19.55	0.45
12	19.55	7.55
11	19.55	8.55
21	19.55	1.45
20	19.55	0.45
Total:		58.45

3. The mean deviation is:

$$
\text { Mean deviation }=\frac{58.45}{9}=6.49
$$

The mean deviation for the set of data is 6.49.

Additional Resources:

Visions Volume 1, p. 81
http://www.mathsisfun.com/data/mean-deviation.html

Answer and Solution:

Qualification 1:

Swimmers that meet qualification 1:

$$
\frac{60}{100}(20)=12
$$

This means 12 swimmers are at or below the $60^{\text {th }}$ percentile.
If 12 of the 20 swimmers are at or below the $60^{\text {th }}$ percentile, then 8 are above it.

Qualification 2:

Mean of the distribution: 19.77 (sum of all values $\div 20$)

Mean deviation of the distribution: 0.557 (sum of all mean deviations \div 20)

$$
\begin{gathered}
|18.56-19.77|=1.21 \\
|18.7-19.77|=1.07 \\
\vdots \\
|21.1-19.77|=1.33 \\
\\
\text { Sum of deviations }=11.14 \\
11.14 \div 20=0.557
\end{gathered}
$$

Swimmers that meet qualification 2.
PBT $\leq 20-\mathrm{MD}$
PBT $\leq 20-0.557$
PBT ≤ 19.443

They are: 18.56, 18.7, 18.9, 18.95, 19.2, 19.25, 19.26

Seven (7) swimmers will earn a spot on the National team.
Additional Resources:

Visions Volume 1, pp. 81-82

2.2 Qualitative Interpretation of Correlation

B)

C)

D)

The answer is A.

Additional Resources:

Visions Volume 1, Section 2.2, pp. 93-95
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity
Answer and Solution:
A)

B)

a fairly significant clustering around a negative line
C)

a rather tight clustering around a positive line
D)

Suggested Strategies:

The scatterplot that shows a distribution of points with no clear direction and furthest from forming a straight line indicates a zero correlation.

The answer is D.

Additional Resources:

Visions Volume 1, Section 2.2, pp. 93-95
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

Answer and Solution:

AGE (years)	$[2,4[$	$[4,6[$	$[6,8[$	$[8,10[$	$[10,12[$
$[10,11[$	3	3	3	3	3
$[11,12[$	3	3	3	3	3
$[12,13[$	3	3	3	3	3
$[13,14[$	3	3	3	3	3
$[14,15[$	3	3	3	3	3

In a table, the closer the data is to the diagonal, the stronger the correlation.

All values are 3 so data is not clustered on the diagonal.
In this case, the data is evenly spread out, thus indicating no correlation.
A) The correlation is positive - false: data is not clustered around a diagonal from top left to bottom right.
B) The correlation is negative - false: data is not clustered around a diagonal from bottom left to top right.
C) The correlation is perfect - false: given an age, there is no way to predict the distance from the stage.
D) The correlation is zero - true: given an age, there is no way to predict the distance from the stage.

The answer is D .
Additional Resources:

Visions Volume 1, Section 2.2, pp. 93-94

Answer and Solution:					
	[0,1[[1,2[[2,3[[3,4[[4,5[
1	2	0	0	0	0
2	0	2	0	0	0
3	0	3	2	2	0
4	0	0	0	,	2
5	0	0	0	1	1

Suggested Strategies:

- In a table, the closer the data is to the diagonal, the stronger the correlation.
- If the diagonal slopes downward, then the correlation is positive - because as x increases, so does y.

The answer is:
Strength

Direction
V Positive
Negative

Additional Resources:

Visions Volume 1, Section 2.2, pp. 93-94

Additional Resources:

Visions Volume 1, Section 2.2, pp. 93-95
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

2.3 Quantitative Interpretation of Correlation

Answer and Solution:
A) $\quad-0.81,0.74,0.39,-0.27$ is from strongest to weakest
B) $\quad-0.27,0.39,0.74,-0.81$ Correct
C) $\quad-0.81,-0.27,0.39,0.74$ is from smallest number to greatest (keeps the sign)
D) $\quad 0.74,0.39,-0.27,-0.81$ is from largest number to smallest number (keeps the sign)

The answer is B .
Additional Resources:

Visions Volume 1, Section 2.3, p. 110
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

Answer and Solution:
A) -1.00 - correct (perfect correlation can be positive or negative)
B) $\quad-0.10$ - in case you misplace the decimal
C) 0.00 - in case you mix up "perfect" and "no correlation"
D) 0.99 - really close, but not perfect.

A perfect correlation is equal to 1 or -1

The answer is A .

Additional Resources:

Visions Volume 1, Section 2.3, p. 110
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

Answer and Solution:	Specific Strategies:
	1. Encase the points within the tightest rectangle possible. 2. Measure the dimensions of the rectangle. 3. Estimate the linear correlation coefficient using the formula:
$\begin{gathered} r= \pm\left(1-\frac{\text { short side }}{\text { long side }}\right) \\ r=-\left(1-\frac{1.4 \mathrm{~cm}}{5.3 \mathrm{~cm}}\right) \\ r=-(0.74) \end{gathered}$ Since the slope is negative, the correlation coefficient should also be negative	$r= \pm\left(1-\frac{\text { short side }}{\text { long side }}\right)$
The linear correlation coefficient is $\mathbf{- 0 . 7 4}$.	
(Because of slight differences in measurement, your answer could be anywhere between -0.76 and -0.69 .)	

Additional Resources:

Visions Volume 1, Section 2.3, p. 110
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

Answer and Solution:	Specific Strategies: Encase the points with a rectangle. Measure the dimensions of the rectangle. Estimate the linear correlation coefficient using the formula: $r= \pm\left(1-\frac{\text { short side }}{\text { long side }}\right)$
$\begin{gathered} r= \pm\left(1-\frac{\text { short side }}{\text { long side }}\right) \\ r=+\left(1-\frac{1.5 \mathrm{~cm}}{4.5 \mathrm{~cm}}\right) \\ r=+(0.67) \end{gathered}$ Since the slope is positive, the correlation coefficient should also be positive.	
The linear correlation coefficient is $\mathbf{0 . 6 7}$. (Because of slight differences in measurement, your answer could be anywhere between 0.65 and 0.72.)	

Additional Resources:

Visions Volume 1, Section 2.3, p. 110
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Correlation
- Trends in Scatter Plots
- Scatter Plots-Activity

Perform a linear regression using the data in the table.
Mayer line method:
Let x be the weight of an elephant, and y be the weight of the food
Split data in half:

x	1250	1300	1320	1382
y	58	63	66	69

1400	1460	1480	1492
67	63	70	76

average y firsthalf $=\frac{58+63+66+69}{4}$

$$
\text { average y secondhalf }=\frac{67+63+70+76}{4}
$$

$$
\text { = } 64
$$

Point $2(1458,69)$
$a=\frac{69-64}{1458-1313}$
$b=64-(0.0344)(1313)$
$=18.8328$
$=0.0344$
Linear regression rule: $y=0.0344 x+18.8328$
Find the value of y when $x=1600$
$y=0.0344(1600)+18.8328$
$=73.8728$

Suggested Strategies:

This is a case where we use data to come up with a rule in order to predict, or in this case extrapolate. Since the data appears to be linear choose a method for determining a regression line. You can use

- the Mayer line method (shown here) or
- the Median-median method, or use
- the regression line from your calculator or - draw it by hand

A 1600 kg elephant would be given 73.9 kg of food. Your answer might vary.

Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124.
http://www.purplemath.com/modules/scattreg2.htm

2.4 Interpretation of Linear Correlation

Answer and Solution:
A)

This data is clustered along a line
B)

This data is clustered along a curve (not linear)
C)

This data has a large gap and therefore a straight linear correlation can't be assumed
D)

This data is clustered in one area rather than along a line

Suggested Strategies:

The graph that shows data points that closely form a straight line yields the best interpretations for linear correlation

The answer is A .
Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124
Khan Academy Video: http://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data see: Fitting a Line to Data, Estimating the Line of Best Fit Explore Learning Gizmos, http://www.explorelearning.com/ look up: Scatter Plots Activity A, Solving Using Trend Lines

Answer and Solution:

B) - the data points in this graph are closest to forming a line.

Suggested Strategies:

The graph showing the strongest correlation, whether positive or negative, would demonstrate the strongest statistical link between two variables. A strong statistical link leads to better prediction.

The answer is B.

Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124
Khan Academy Video: http://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data see: Fitting a Line to Data, Estimating the Line of Best Fit Explore Learning Gizmos, http://www.explorelearning.com/ look up: Scatter Plots Activity A, Solving Using Trend Lines
http://www.purplemath.com/modules/scattreg2.htm

Answer and Solution:
A) False: The correlation between the two variables is strong and not positive.
B) The correlation between the two variables is strong and negative.
C) False: The correlation between the two variables is not weak and positive.
D) False: The correlation between the two variables is not weak and negative.

Suggested Strategies:

The options are all wordy but you will see that they are almost exactly the same; look for the differences - you might want to use a highlighter...

The correlation coefficient of -0.93 is close to -1 , this results in a correlation described as negative and strong.

The answer is B.

Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124
Khan Academy Video: http://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data see: Fitting a Line to Data, Estimating the Line of Best Fit Explore Learning Gizmos, http://www.explorelearning.com/ look up: Scatter Plots Activity A, Solving Using Trend Lines
http://www.dummies.com/how-to/content/how-to-interpret-a-correlation-coefficient-r.html

Answer and Solution:	Suggested Strategies: A) $\quad \mathbf{0 . 3 2}$ - close to 0 and positive B) $\quad 0.87$ - positive but not close to 0
C) A weak and positive correlation is best represented by a correlation coefficient value that is positive and much closer to 0 than to	
D) $\quad-0.26$ - closest to 0 but negative	1.

Answer and Solution:	
A)	0.29 - positive by not high enough so suggest a strong correlation
B)	0.83 - positive and high enough to suggest a strong correlation
C)	-0.45-a negative correlation, and not very strong
D)	-0.79 - a negative correlation, even though it is fairly stron

The answer is B.

Suggested Strategies:

This scatterplot shows data points that trend upward therefore you are looking for a positive correlation coefficient.

This scatterplot also shows data points that are close together (along a line) rather than spread out so you are looking for a correlation coefficient that suggests a strong correlation.

Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124
Khan Academy Video: http://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data see: Fitting a Line to Data, Estimating the Line of Best Fit Explore Learning Gizmos, http://www.explorelearning.com/ look up: Scatter Plots Activity A, Solving Using Trend Lines

```
Answer and Solution:
With the Mayer line method:
x represents the foot length in centimetres
y represents the height in centimetres
Since the foot lengths are already in ascending order this step has been
done for us.
x _ { 1 } = \underline { 2 2 + 2 2 + 2 3 + 2 3 . 5 + 2 4 + 2 4 + 2 4 . 5 + 2 5 + 2 5 + 2 5 . 5 ~ = ~ 2 3 . 8 5 }
    10
x}=\underline{25.5+25.5+26+27+27.5+28+28+28.5+29+29.5
    1 0
    = 27.45
y}=\underline{154+151+155+165+160+158+165+161+163+164
    1 0
    = \underline{1596 = 159.6}
        10
y2=\underline{170+173+167+174+175+176+183+185+190+186}
                    10
    = \underline{1779 = 177.9}
        1 0
a=\underline{177.9-159.6 = 183 = 5.08}
    27.45-23.85 3.6
y=5.08x+b using either point (23.85, 159.6)
159.6=5.08(23.85) +b or (27.45, 177.9)
159.6 = 121.16 + b
b=38.44
y=5.08x+38.44
Marco: 181 = 5.08x + 38.44
    181-38.44=5.08x
    142.56 = 5.08x
    x= 142.56 = 28 cm
        5.08
```

Answer: Marco's predicted foot length is $\mathbf{2 8} \mathbf{~ c m}$. (note that if you use a different method you will get a slightly different answer)

Suggested Strategies:

What you are looking for is a linear equation relating height and foot length. Once you've found one, you will use it to find foot length, knowing height.

There are a number of methods possible.

- Complete a scatter plot, drawing in the line of best fit and finding the equation of that line
- Use the medianmedian method
- Use the Mayer line method
- Enter the data into a graphing calculator to get the regression line

Additional Resources:

Visions Volume 1, Section 2.4, pp. 123-124
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Scatter Plots Activity A, Solving using trend lines
Khan Academy video: http://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data see fitting a line to data, estimating the line of best fit

3.1 Congruent Triangles

Answer and Solution:	Suggested Strategies: The diagram identifies pairs of congruent angles and even though the congruent sides are not identified, the triangles share a side, which makes it congruent. Since the shared side is between pairs of congruent angles, the proof ASA is valid to prove congruency.
When proving congruency (\cong), first consider the three possible proofs (SSS, SAS, ASA). Starting with this will likely help you to eliminate one or two of the proofs as not having enough information pretty quickly.	
The answer is C.	Although this proof is perhaps not obvious since the congruent sides aren't identified, don't overlook the fact that the triangles share a side (AD).

Additional Resources:

Visions Volume 1, Section 3.1, pp. 149-151, pp. 160-161
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving triangles congruent Khan Academy video:
http://www.khanacademy.org/search?page search query=congruent+triangles Congruent triangles (all conditions: SSS, ASA and SAS)

Answer and Solution:

Although the top angle is not identified as being congruent in the two triangles in answer b, they must be since the other two pairs of corresponding angles are the same. Since the unidentified angles are now known to be congruent, two theories can be used to prove congruency - ASA and SAS.
A) There is not enough information, having two angles the same makes the triangle similar but not necessarily congruent
B) This may look like ASA but the congruent sides are not between the congruent angles so you can't conclude the triangles are congruent by that theory.
C) This is the correct answer.
D) This pair doesn't have corresponding sides that are congruent so you can't conclude they are congruent by ASA.

Suggested Strategies:

Don't be discouraged if the correct answer doesn't jump out at you right away! Even though this is a multiple choice question, and you might expect to see the answer right away, there is often work or extra thinking needed to uncover the correct answer. Don't give up until you've tried all possibilities, in this case it involved a little extra thought.

The answer is C.

Additional Resources:

Visions Volume 1, Section 3.1, pp. 149-151, pp. 160-161
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving triangles congruent Khan Academy video:
http://www.khanacademy.org/search?page search query=congruent+triangles Congruent triangles (all conditions: SSS, ASA and SAS)

Answer and Solution: If P is the midpoint of $M N$, then MP and NP are congruent sides of the triangles. It should be said that <LPM and <OPN are vertically opposite and therefore congruent and that <PML and <PNO are alternate interior angles of a transversal through parallel lines, which means those angles are congruent as well. With that information, we can say the triangles are necessarily congruent using the ASA proof. $\begin{gathered} \overline{M P} \cong \overline{P N} \\ <\mathrm{LPM} \cong<\mathrm{OPN} \\ <\mathrm{PML} \cong<\mathrm{PNO} \\ \Delta \mathrm{LMP} \cong \Delta \mathrm{ONP} \text { by ASA } \end{gathered}$	Suggested Strategies: Make sure you fill in all the information that you know on your diagrams. This is important on all questions of a test, but especially on ones where there is obviously information that has been left out. Don't forget all of the angle relationships when filling in information - and seeing a transversal through parallel lines should remind you of those angle relationships.
Additional Resources:	
Visions Volume 1, Section 3.1, pp. 149-151, pp. 160-161 Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving triangles congruent Khan Academy video: http://www.khanacademy.org/search?page search query=congruent+triangles Congruent	

Answer and Solution:

This diagram shows only two pairs of sides are congruent so you can eliminate ASA.

That leaves SSS and SAS. But you know that vertically opposite angles are necessarily congruent even if they aren't identified.

Suggested Strategies:

When proving congruency consider the three possible proofs (SSS, SAS, ASA). Starting with this will likely help you to eliminate one or two of the proofs as not having enough information pretty quickly.

In other cases, don't forget to go through the possible angle relationships for intersecting and transverse lines across parallel lines.

$\Delta A B C \cong \Delta E D C$ by SAS

Additional Resources:

Visions Volume 1, Section 3.1, pp. 149-151, pp. 160-161
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving triangles congruent Khan Academy video: http://www.khanacademy.org/search?page search query=congruent+triangles Congruent triangles (all conditions: SSS, ASA and SAS

Answer and Solution:

Step 1) Calculate the coordinates of P using the midpoint formula. They are (-16, 26).

$$
\begin{array}{ll}
\left(x_{m}, y_{m}\right):\left(\frac{(-60+28)}{2}, \frac{(48+4)}{2}\right) \\
\left(x_{m}, y_{m}\right): & \left(\frac{(-32)}{2}, \frac{(52)}{2}\right) \\
\left(x_{m}, y_{m}\right): & (-16,26)
\end{array}
$$

OR Calculate the distance between the two points and divide that distance by 2.
Step 2) Calculate the distance from M to P. It is 49.1935 metres.

$$
\begin{aligned}
& d=\sqrt{(-16--60)^{2}+(26-48)^{2}} \\
& d=\sqrt{(44)^{2}+(-22)^{2}} \\
& d=\sqrt{1936+484} \\
& d=\sqrt{2420} \\
& d=49.1935 \text { metres }
\end{aligned}
$$

Step 3) The missing angle (<MLP) is 70°. Using the Sine Law, calculate the missing measurements for $\Delta \mathrm{LMP}$. We know side MP is 49.1935 metres, we can calculate side LM. It is 52.15 metres. We can then calculate side LP. It is 13.55 metres.

$$
\begin{gathered}
\frac{49.1935}{\sin 70}=\frac{x}{\sin 15}=\frac{y}{\sin 95} \\
x=\frac{49.1935(\sin 15)}{\sin 70} \\
x=13.55 \text { metres }(\text { side LP }) \\
y=\frac{49.1935(\sin 95)}{\sin 70} \\
y=52.15 \text { metres }(\text { side } L M)
\end{gathered}
$$

Step 4) Calculate the area of $\triangle \mathrm{LMP}$ using either the Trig Formula or Hero's Formula. It is $332 \mathrm{~m}^{2}$ (rounded to the nearest square meter).

Example of Trig Formula:
Area $=\frac{(13.55)(52.15)(\sin 70)}{2}=332$ metres 2
OR Hero's Formula:
Half the perimeter: $\frac{49.19+13.55+52.15}{2}=57.45$
Area $=\sqrt{57.45(57.45-49.19)(57.45-13.55)(57.45-52.15)}$
Area $=\sqrt{57.45(8.26)(43.9)(5.3)}$
Area $=\sqrt{110410.52379}$
Area $=332$ metres 2
Step 5) Multiply the area of $\Delta \mathrm{LMP}$ by 2 , then multiply that by $\$ 5$.
The total cost of painting is $\$ 3320$.
$\left(332 \mathrm{~m}^{2} \times 2 \times \$ 5 / \mathrm{m}^{2}=\$ 3320\right)$
You will charge \qquad $\$ 3320$ for painting the two triangles that make up the logo.

Additional Resources:

Visions Volume 1, Section 3.1, pp. 149-151, pp. 160-161
Khan Academy video: http://www.khanacademy.org/search?page search query=congruent+triangles Congruent triangles (all conditions: SSS, ASA and SAS Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving triangles congruent http://mathbits.com/MathBits/TISection/Trig/AreaTrigTri.htm

3.2 Similar Triangles

Answer and Solution:

$\triangle A B C \sim \triangle D E C$ because of the AA theorem - angle C is the same in both triangles, and because they are vertically opposite,
$\angle E \cong \angle B$ (and $\angle D \cong \angle A$) because they are alternate interior angles.
In order to determine the total length of $\overline{\mathrm{BE}}$, we need the length of $\overline{C E}$, so label the measure of $\overline{C E}$ as " x ".

Since the triangles are similar, their sides must be proportional. Set up a proportion using corresponding sides:
$\frac{m \overline{C E}}{m \overline{B C}}=\frac{m \overline{E D}}{m \overline{A B}} \quad \rightarrow \quad \frac{x}{12}=\frac{5}{16}$
Cross multiply to determine the value of x

$$
x=12 \times 5 \div 16=3.75 \mathrm{~cm}
$$

To determine the length of side $B E$, add $m \overline{B C}+m \overline{C E}$

$$
12+3.75=15.75 \mathrm{~cm}
$$

A) $\quad 2.5 \mathrm{~cm}$ is the measure of segment $C D$.
B) $\quad 3.75 \mathrm{~cm}$ is the measure of segment EC . The measure of segment $B C$ must be added to this.
C) The result of adding the measures of segments $C D$ and $B C$ instead of $E C$ and $B C$.
D) $\quad \mathbf{1 5 . 7 5} \mathbf{~ c m}$ is correct.

The answer is D.

Specific Strategies:

Some distractors might stand out: choices A) and B) are both fairly small, whereas C) and D) are both fairly large. An educated guess would eliminate A) and B), but we should remember that the drawings are never to scale.

- Label the figure with the given measurements
- Recognize that the triangles are similar because of AA

Alternate strategy:
Determine the scale factor
k by dividing the lengths of corresponding sides: $k=$ 3.2

Divide side BC by 3.2 to get the length of side $C E=3.75 \mathrm{~cm}$

- After completing the calculations, re-read the question and reread the choices

Additional Resources:

Visions Volume 1, Section 3.2, p. 171 (Minimum Conditions for Similar Triangles)
Khan Academy video:http://www.khanacademy.org/math/geometry/similarity/triangle similarlity/v/similarity-example-problems Similarity example problems

Answer and Solution:

$m \angle y=180^{\circ}-105^{\circ}-27^{\circ}=48^{\circ}$ since the angles in every triangle add up to 180°
A) Incorrect: This triangle only has one angle in common with triangle XYZ. Two side measures are given, but it is only possible to compare with one side of XYZ and we need at least two sides to prove SSS or SAS. (If you used the Sine Law to find the missing side of the original triangle, you will also see that the sides are not proportional.)
B) Incorrect: This triangle gives us three side measurements, but like option A, we would need to be able to compare at least two sides to prove SSS or SAS.
C) Correct: This triangle is similar to XYZ. It has two angles in common because the third angle was calculated above to be 48°. So by AA, the triangles are similar.
D) Incorrect: This triangle is not necessarily similar to XYZ because the information the triangle is not unique - you can make many triangles with those three features fixed.

The answer is C.

Additional Resources:

Visions Volume 1, Section 3.2, p. 171 (Minimum Conditions for Similar Triangles)
Khan Academy video:http://www.khanacademy.org/math/geometry/similarity/triangle similarlity/v/similarity-example-problems Similarity example problems

Answer and Solution:

$\angle C \cong \angle C$ because they are vertically opposite angles in the original diagram.

Because two corresponding pairs of sides are given, as well as the angle contained, we should consider that the triangles are similar by SAS.

Check if the sides are proportional:

$$
\checkmark \frac{30}{18}=\frac{25}{15}
$$

A) We are only given one pair of corresponding angles and we don't know for sure that side $\overline{A B}$ is parallel to side $\overline{D E}$, so it's not AA.
B) Only 3 side lengths are given so we cannot consider SSS.
C) ASA is not a theorem for similarity.
D) Because the proportions of two pairs of sides are the same and the angle contained by those sides is congruent, the triangles are similar by SAS.

The answer is D.

Specific Strategies:

- Keyword: Similar
- Recall theorems on similar triangles
- Re-draw the triangles in the same orientation - be careful with the rotation
- Take note of other measurements which are not given in the problem
- Consider each of the similarity theorems

Additional Resources:

Visions Volume 1, Section 3.2, p. 171 (Minimum Conditions for Similar Triangles) Khan Academy video:http://www.khanacademy.org/math/geometry/similarity/triangle similarlity/v/similarity-example-problems Similarity example problems Khan Academy video: http://www.khanacademy.org/math/geometry/similarity/triangle similarlity/v/similar-triangle-example-problems Similar triangle example problems

Answer and Solution:

Because the unknown length is part of side $\overline{A C}$, it will be simpler to solve for the length of side $\overline{A C}$ first and then subtract 24 m .

Set up a proportion using corresponding sides:

$$
\begin{gathered}
\frac{m \overline{D E}}{m \overline{B C}}=\frac{m \overline{A E}}{m \overline{A C}} \\
\frac{20}{35}=\frac{24}{m \overline{A C}} \\
m \overline{A C}=42
\end{gathered}
$$

If side $A C$ measures $42 m$, then the length of $E C$ is:

$$
42-24=18 m
$$

Specific Strategies:

- Keyword: Similar
- Label measurements directly on the figure

Highlight the length that the question is asking for

- Re-draw the triangles separately with the same orientation and include any measurements given
- Highlight
corresponding sides with different colors
- Label the unknown measurement as " x "
- Reminder: re-do your calculations to double check, you will not get partial credit if your final answer is wrong!

Answer: The length of segment EC is 18 m .

Additional Resources:

Visions Volume 1, section 3.2, p. 171 (Minimum Conditions for Similar Triangles)
Khan Academy video: http://www.khanacademy.org/math/geometry/similarity/triangle similarlity/v/similarity-example-problems Similarity example problems
\(\left.$$
\begin{array}{|l|l|}\hline \text { Answer and Solution: } & \begin{array}{l}\text { Specific Strategies: } \\
\text { Label the given } \\
\text { measurements on the } \\
\text { figure }\end{array}
$$

Label the given

measurements on the

figure\end{array}\right\}\)| Draw the figures side |
| :--- |
| by side in the same |
| orientation |

3.3 Metric Relations (Right Triangles)

Answer and Solution:

Step 1: Pythagorean Theorem

$$
\begin{aligned}
& (m \overline{A C})^{2}=60^{2}+80^{2} \\
& m \overline{A C}=\sqrt{3600+6400} \\
& m \overline{A C}=100 \mathrm{~m}
\end{aligned}
$$

Step 2: Apply Metric Relation

$$
\begin{aligned}
& a \bullet b=c \bullet h \\
& (m \overline{C B})(m \overline{A B})=(m \overline{A C})(m \overline{B D}) \\
& 60(80)=100(m \overline{B D}) \\
& m \overline{B D}=\frac{4800}{100} \\
& m \overline{B D}=48 \mathrm{~m}
\end{aligned}
$$

A) $\quad 36 \mathrm{~m}$ - this is $m \overline{A D}$
B) $\quad 48 \mathrm{~m}$ - correct
C) 64 m - this is $m \overline{D C}$
D) 69 m - this is the result from using an incorrect formula

Suggested Strategies:

1) Put the measures onto the diagram.
2) If you are using formulas, make sure you label the triangle according to your formulas.
3) Identify the metric relation(s) that enable(s) you to solve for the unknown.
4) Consider that it might be more than one step.

Note: In this case you must apply Pythagorean theorem first before applying a metric relation formula.

The answer is B.

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles

Answer and Solution:

Step 1: Metric Relation

$$
\begin{gathered}
h^{2}=m \cdot n \\
(m \overline{C D})^{2}=(m \overline{A D}) \cdot(m \overline{D B}) \\
m \overline{C D}=\sqrt{12(45)} \\
m \overline{C D}=\sqrt{540} \\
m \overline{C D}=23.2379 \text { meters }
\end{gathered}
$$

Step 2: Area of Triangle ABC

$$
\frac{m \overline{C D}(m \overline{A D}+m \overline{D B})}{2}
$$

$$
\frac{23.2379(12+45)}{2}
$$

$$
662 m^{2}
$$

Suggested Strategies:

1) Orient the triangle in a way that is easiest for you.
2) Put the measures on the diagram and relabel if necessary.
3) Select the appropriate metric relation formula. In this case we need ' h ' and we are given ' m ' and ' n '.
4) Remember your basic area formulas. In this case we need area of triangle.

Area $=\frac{\text { base } x \text { height }}{2}$
Also be sure you get the area of the requested triangle. In this case the questions ask for triangle ABC - the largest of the three triangles.

The answer is C.

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles http://www.youtube.com/watch?v=fdEBhf9SOYA

Answer and Solution:

Use Metric Relations to find the missing side.

$$
\begin{aligned}
& h^{2}=m \cdot n \\
& 50^{2}=70(m \overline{P V}) \\
& 50 \mathrm{~m} \quad \begin{array}{ll}
\frac{50^{2}}{70} & =m \overline{P V} \\
& \frac{250}{7}
\end{array}=m \overline{P V} \\
& 70 \mathrm{~mm} \frac{7}{P V}
\end{aligned}
$$

Use a Trigonometric Ratio to find the missing angle.

35.714

Suggested Strategies:

1) Redraw the diagram with only the triangles and measures (so the crane doesn't confuse you.) Now locate angle WPV.
2) If we find the measure of PV, we can use a trig ratio (tangent) to find the missing angle.
3) To find the missing measure we'll use a metric relation that uses the measures we have.

Make sure your calculator is set to degree mode.
$\tan ^{-1}\left(\frac{50}{35.714}\right)=54.46^{\circ}$

The measure of angle WPV is $\approx 54.5^{\circ}$.

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles

Answer and Solution:

Step 1: Solve for $m \overline{D B}$

$$
\begin{gathered}
a^{2}=n \cdot c \\
(m \overline{B C})^{2}=(m \overline{B A})(m \overline{D B}) \\
10^{2}=20(m \overline{D B}) \\
\frac{100}{20}=(m \overline{D B}) \\
(m \overline{D B})=5
\end{gathered}
$$

Step 2: Solve for $(m \overline{A D})$

$$
\begin{aligned}
(m \overline{A B}) & =m \overline{A D}+m \overline{D B} \\
20 & =m \overline{A D}+5 \\
\boldsymbol{m} \overline{A D} & =\mathbf{1 5} \text { meters }
\end{aligned}
$$

Suggested Strategies:

1) If necessary, orient the triangle in a way that is easiest for you.
2) If necessary, re-label the vertices of triangle according to your memory aid.
3) Add the numerical information to the diagram.
4) Identify the metric relation formula that enables you to solve for the unknown or set up a proportion knowing the three triangles are similar:

$$
\frac{\text { hyp }_{\text {small }}}{\text { short side }_{\text {small }}}=\frac{\text { hyp }_{\text {large }}}{\text { short side }_{\text {large }}}
$$

$$
\frac{10}{\overline{B D}}=\frac{20}{10}
$$

The measure of $\overline{A D}$ is 15 m .

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles

Answer and Solution:

Step 1: Solve $m \overline{P F}$
Distance formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\mathrm{P}(15,60)$ and $\mathrm{F}(60,90) \sqrt{(60-15)^{2}+(90-60)^{2}}=m \overline{P F}$

$$
m \overline{P F}=\sqrt{45^{2}+30^{2}}=54.08
$$

Step 2: Solve $m \overline{Z P}$
Set-up equation of line ZF $\quad y=a x+b$
Given $P(15,60)$ and $F(60,90)$
$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{90-60}{60-15}=\frac{30}{45}=\frac{2}{3}$
$y=\frac{2}{3} x+b \quad$ Now we have to solve for ' b '.
Solve for ' b ' by substituting the coordinates of a point on the line into the equation. In this case we have a choice between point P and F. It does not matter which one you choose.

Using the coordinates of point P we have,
$60=\frac{2}{3}(15)+b$
$60=10+b$
$b=50$
Step 3: Solve $m \overline{Z P}$
Distance formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$Z(0,50)$ and $P(15,60)$

$$
\begin{aligned}
& \sqrt{(15-0)^{2}+(60-50)^{2}}=m \overline{P Z} \\
& m \overline{P Z}=\sqrt{15^{2}+10^{2}}=18.03
\end{aligned}
$$

Step 4: Metric Relations to solve $\mathrm{m} \overline{P K}$

$$
\begin{gathered}
h^{2}=m \cdot n \\
(m \overline{P K})^{2}=(m \overline{Z P})(m \overline{P F}) \\
m \overline{P K}=\sqrt{18.03(54.08)} \\
m \overline{P K}=31.23
\end{gathered}
$$

Step 5: Solving for $\mathrm{m} \overline{Z K}$

$$
\begin{gathered}
\mathrm{m} \overline{Z K}=\sqrt{(m \overline{Z P})^{2}+(m \overline{P K})^{2}} \\
\mathrm{~m} \overline{Z K}=\sqrt{18.03^{2}+31.23^{2}} \\
\mathrm{~m} \overline{Z K}=36.06
\end{gathered}
$$

Step 6: Sum up the lengths of three line segments

$$
m \overline{Z K}+m \overline{P K}+m \overline{P F}=121.37 \text { meters }
$$

The total combined distance is $\mathbf{1 2 1 . 3 7}$ meters.

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles

Answer and Solution:

Here is an example of an appropriate method

Step 1: We can prove that $\triangle B C D$ and $\triangle E C D$ are congruent by theorem SAS: Justification:

- $m \overline{C D}$ is a shared length to both triangles
- $m \overline{B D}=\mathrm{m} \overline{C E}$ Given information
- $m \angle A B C$ and $m \angle D E F$ are both 90°
$m \overline{B C}=\mathrm{m} \overline{D E}$ since they are corresponding sides of congruent triangles.
Step 2: Apply Pythagorean Theorem to find $\mathrm{m} \overline{A D}$

$$
\begin{gathered}
m \overline{A D}=\sqrt{110^{2}-100^{2}} \\
m \overline{A D}=45.8258
\end{gathered}
$$

Step 3: Apply Metric Relation to find $\mathrm{m} \bar{D} \bar{C}$

$$
\begin{gathered}
h^{2}=m \cdot n \\
(m \overline{B D})^{2}=(m \overline{A D})(m \overline{C D}) \\
100^{2}=45.8258(m \overline{C D}) \\
\frac{100^{2}}{45.8258}=(m \overline{C D}) \\
(m \overline{C D})=218.2177
\end{gathered}
$$

Step 4: Apply Pythagorean Theorem to find $m \overline{B C}$

$$
\begin{aligned}
& \quad(m \overline{B C})=\sqrt{218.2177^{2}+100^{2}} \\
& (m \overline{B C})=240 \text { metres }
\end{aligned}
$$

The length of the cable represented by $\overline{\boldsymbol{D E}}$ is $\mathbf{2 4 0} \mathrm{m}$.

Additional Resources:

Visions Volume 1, Section 3.3, p. 181
Explore Learning Gizmos, http://www.explorelearning.com/ look up: similarity in right triangles

4.1 Real Functions

Answer and Solution:

x (number of hours)	$f(x)$ (total number of cells)
0	50
1	$50 \times 2=100$
2	$100 \times 2=200$
3	$200 \times 2=400$

An initial amount which increases by the same multiplier is an exponential function

$$
f(x)=a\left(c^{x}\right)
$$

A) $\mathrm{f}(x)=50\left(x^{2}\right)$

Since we see the term x^{2}, this is a quadratic or second-degree polynomial function.
B) $\quad f(x)=\mathbf{5 0}\left(2^{x}\right)$

This is an exponential function with an initial value of 50 and a base of 2 , which means that it is multiplying by $\mathbf{2}$ for each increase in \boldsymbol{x}.
C) $\quad \mathrm{f}(\mathrm{x})=50+2 x$

This is a linear function or first-degree polynomial function since we see no exponents.
D) $\quad \mathrm{f}(x)=2\left(50^{\mathrm{x}}\right)$

This is an exponential function, but the initial value and the base are switched.

Specific Strategies:

- Since the choices are different function rules; the goal of the problem is to translate the situation into a functional model.
- Make a table of values to get a clearer picture of the relation
- Doubling the number of cells means you must multiply by 2 for each hour
- Look on your memory aid for the rule of an exponential function

The answer is B.

Additional Resources:

Visions Volume 2, Section 4.1, p. 17 (Families of Functions)
Visions Volume 2, Section 4.3, p. 39 (Exponential Functions)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Exponential functions Activity A

Answer and Solution:

A) This option is a step function, which means that the amount of rain accumulated remains constant for a period of time and jumps abruptly at critical values; it does not make sense to represent a constant increase of 5 mm per hour
B) This option is a linear function of first-degree polynomial function. It's initial value is $\mathbf{1 2 0}$ and it has a positive slope, indicating a constant increase
C) This option does not illustrate a constant increase; the amount of rain increases sharply at first, then accumulates more slowly
D) This option appears to be an exponential function, which would mean that the amount of rain increases by some multiplying factor instead of a constant rate

Specific Strategies:

Since the choices are graphs, this is a problem that can be answered by observation; no calculations need to be done.

- Consider all the functional models on your memory aid
- The linear function model is the only one which offers an interpretation for a constant increase over time

The answer is B.

Additional Resources:

Visions Volume 1, Section 1.2, p. 22 (Lines in the Cartesian Plane)
Visions Volume 2, Section 4.1, p. 17 (Families of Functions)
Khan Academy video: http://www.khanacademy.org/math/algebra/algebra-functions/ relationships functions/v/basic-linear-function Ex. Constructing a Function

Answer and Solution:

A) The function continues to increase after $\mathbf{x}=\mathbf{2} .5$ and it never touches the x -axis before that so there is no x -intercept
B) The y-intercept of this function is where $\mathrm{x}=0$ and therefore $y=1$
C) The function is decreasing, meaning that it goes down from left to right over the interval [0.5, 1.5]
D) Since the function continues to increase after $x=2.5$, it has no maximum, but it definitely has a minimum at y-value of 0.5

Specific Strategies:

Since the answers are properties of functions, we need to analyze the graph to determine the answer. No calculations are necessary.

- Find the definitions for properties of functions on your memory aid
- Make sure you know which properties concern x values and which properties concern y-values
x-values: domain, x intercept intervals of increase and decrease, positive and negative intervals

\boldsymbol{y}-values:

range, y-intercept, extrema (maximum and minimum)

The answer is A .

Additional Resources:

Visions Volume 2, Section 4, (Revision), pp. 7-8 (Properties of Functions)
Khan Academy video: Comparing features of functions 2 (example 1) ; Interpreting features of functions 2 (example 1) ; When a function is positive or negative
Khan Academy video: http://www.khanacademy.org/math/trigonometry/functions and graphs/ analyzing functions/v/when-a-function-is-positive-or-negative

Answer and Solution:

A) The x only has a coefficient so this is a linear function and would be a line.
B) Correct - The \mathbf{x} is an exponent so this is an exponential function and would curve up (or down) sharply and cross the y-axis.
C) The x is squared so this is a quadratic function and would be a U-shape.
D) The x is a denominator so this is an inverse (rational) function and, in this particular case, would not cross the y-axis (since $x \neq 0$).

Suggested Strategies:

- Compare the graph of the functions studied and their corresponding rules, to the ones provided in the question.

The answer is B.

Additional Resources:

Visions Volume 2, Section 4.1, p. 17 (Families of Functions)
Visions Volume 2, Section 4.3, p. 39 (Exponential Functions)
Khan Academy video; http://www.khanacademy.org/math/trigonometry/exponential and
logarithmic func/exp growth decay/v/exponential-growth-functions - Exponential grown
functions
$\left.\begin{array}{|l|l|}\hline \text { Answer and Solution: } & \begin{array}{l}\text { Specific Strategies: } \\ \text { The range is the set of all possible values of } y \text { from least to greatest } \\ \text { (bottom to top). } \\ \text { The lowest value on the graph is } y=0 \text { but this point is an open circle } \\ \text { (and therefore not included) and the greatest value on the graph is } \\ y=25 .\end{array} \\ \begin{array}{ll}\text { Therefore, the range is }] 0,25] . & \begin{array}{l}\text { Loor the lowest value } \\ \text { of } y \text { on the graph and the } \\ \text { highest value of } y \text { on the } \\ \text { graph. }\end{array} \\ \text { Use interval notation in } \\ \text { providing your answer. } \\ \text { (Remember that the } \\ \text { smallest value comes }\end{array} \\ \text { first.) }\end{array}\right\}$

Additional Resources:

Visions Volume 2, Section 4 (Revision), p. 7 (Properties of Functions)

Answer and Solution:

Determine the y -value when $\mathrm{x}=8$ for the function $\mathrm{g}(\mathrm{x})$

$$
g(8)=10(8)^{2}
$$

BEDMAS: Remember to apply the exponent first

$$
\begin{aligned}
g(8) & =10 \times 64 \\
& =640
\end{aligned}
$$

So, the step function begins at a y-value of $\$ 640$ after 8 hours of work. The price doesn't go up until 12 hours.

x (Number of hours)	y (Cost \$)
$[8,12[$	$\$ 640$
$[12,16[$	$\$ 640+250=\$ 890$
$[16,20[$	$\$ 890+250=\$ 1140$
$[20,24[$	$\$ 1140+250=1390$
$[24,28[$	$\$ 1390+\mathbf{2 5 0}=\mathbf{\$ 1 6 4 0}$

For $\$ 1640$, it will take 24 to 28 hours, not including 28 hours.

That job would have taken between 24 and 28 hours.

Additional Resources:

Visions Volume 2, Section 4.1, p. 17 (Families of Functions)
Visions Volume 2, Section 4.2, p. 28 (Second-degree Polynomial Function)
Visions Volume 2, Section 4.3, p. 53 (Piecewise Function)
Step Graphs: http://www.youtube.com/watch?v=LUshzsvoGZU

4.2 Second-Degree Polynomial Function

Answer and Solution:

A) This parabola opens upward, so it must have a positive "a" value. Also, when $x=1$ we can check the y-value by using the rule:
$f(x)=2(1)^{2}=2$. Since the parabola appears to pass through the point $(1,2)$, we can conclude that this is the correct graph.
B) This parabola opens upward, so it must have a positive " a ". However, when $x=1$, the value of the function is clearly less than 1 , which does not satisfy the equation $f(x)=2 x^{2}$.
C) This parabola opens downward, so parameter "a" is a negative value.
D) This parabola opens downward, so parameter "a" is a negative value.

Specific Strategies:

Remember:
For a quadratic or second-
degree polynomial
function, $y=a x^{2}$

Since parameter "a" is positive, the parabola should open upward.

Since parameter " a " is longer than 1 , the parabola should be narrower than the basic function $f(x)=x^{2}$.

The answer is A .

Additional Resources:

Visions Volume 2, pp. 28-29
Khan Academy video: https://www.khanacademy.org/math/algebra/quadratics/solving graphing quadratics/v/graphing-a-quadratic-function
http://www.purplemath.com/modules/grphquad.htm
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Quadratics in Polynomial
Form- Activity A and Activity B (for these, you must keep the b and c sliders at position 0)

Answer and Solution:

Just by looking... only B matches the graph
A) quadratic opening up
B) quadratic opening down
C) exponential function
D) linear function

Confirm by testing the point...
A) $-4=0.25(4)^{2}$
$-4=4$ false
B) $\quad-4=-0.25(4)^{2}$
$-4=-4$ true
C) $\quad-4=-0.25^{4}$

$$
-4=0.0039 \text { false }
$$

D) $\quad-4=0.25(4)+1$
$-4=2$ false
Since only one statement is true, that must be the answer.

The answer is B (a quadratic with a negative parameter " a ").

Additional Resources:

Visions Volume 2, pp. 28-29
Khan Academy video: https://www.khanacademy.org/math/algebra/quadratics/solving graphing quadratics/v/graphing-a-quadratic-function
http://www.purplemath.com/modules/grphquad.htm
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Quadratics in Polynomial Form- Activity A and Activity B (for these, you must keep the band c sliders at position 0)

Answer and Solution:

A) $\quad f(x)=-3 x^{2}$

This function opens down (decreases after the vertex) but the table of values increases after the vertex
B) $\quad f(x)=-0.3 x^{2}$

This function opens down (decreases after the vertex) but the table of values increases after the vertex
C) $\quad f(x)=0.3 x^{2}$

This function opens up and when a non-zero x-value is tested, it gives the corresponding value for $f(x)$:

$$
f(5)=0.3(5)^{2}=0.3 \times 25=7.5
$$

D) $\quad f(x)=3 x^{2}$

This function opens up but when a non-zero x-value is tested, it doesn't give the corresponding $f(x)$.

$$
f(5)=3(5)^{2}=3 \times 25=75 \neq 7.5
$$

OR

Calculate parameter "a" algebraically using one of the points given:

$$
f(x)=a x^{2}
$$

for example: $(5,7.5)$

$$
\begin{gathered}
7.5=a(5)^{2} \\
\frac{7.5}{25}=\frac{a \times 25}{25} \\
0.3=a
\end{gathered}
$$

The answer is C.

Additional Resources:

Visions Volume 2, pp. 28-29
Khan Academy video: https://www.khanacademy.org/math/algebra/quadratics/solving graphing quadratics/v/graphing-a-quadratic-function
http://www.purplemath.com/modules/grphquad.htm
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Quadratics in Polynomial Form- Activity A and Activity B (for these, you must keep the band c sliders at position 0)

Answer and Solution:

The rule for a second degree function is the form $y=a x^{2}$
Use the coordinates $(5,10)$ in the function form to determine parameter "a".

$$
\begin{aligned}
& y=a x^{2} \\
& (10)=a(5)^{2} \\
& 10=25 a \\
& \frac{10}{25}=\frac{25 a}{25} \\
& \frac{2}{5} \text { or } 0.4=a \\
& y=0.4 x^{2} \\
& \text { or } f(x)-0.4 x^{2}
\end{aligned}
$$

Specific Strategies:

Recall the rule for the second degree function with vertex at the origin is $y=a x^{2}$.

Remember that in any algebraic equation, if you substitute known values, you can solve for the unknown remaining.

ASK YOURSELF:

What information is given in the graph?
An (x, y) point is given in the graph.
If you substitute $x \& y$, then only parameter "a" will remain to be determined.

The rule of the function is $y=0.4 x^{2}$ or $f(x)=0.4 x^{2}$

Additional Resources:

Visions Volume 2, pp. 28-29
Explore Learning Gizmos, http://www.explorelearning.com/ look up:

- Quadratic Functions
- Quadratics in Polynomial Form- Activity A and Activity B (for these, you must keep the b and c sliders at position 0)

Additional Resources:

Visions Volume 2, Section 4.2, pp. 28-29
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Quadratics in Polynomial Form- Activity A and Activity B (for these, you must keep the b and c sliders at position 0)

Answer and Solution:

Company A:

You can use any of the points to substitute them in $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$

$$
\begin{aligned}
& y=a x^{2} \\
& (1800)=a(10)^{2} \\
& 1800=100 a \\
& \frac{1800}{100}=\frac{100 a}{100} \\
& a=18 \\
& \text { rule }: y=18 x^{2}
\end{aligned}
$$

Now that you have the rule, you can substitute accordingly:

```
Turf piece of 22.5m (x value):
y=18\times(22.5)}\mp@subsup{}{}{2
y=9112.5
$9 112.50
```


Company B:

Calculate the area of the square piece of turf:

$$
22.5 \times 22.5=506.25 \mathrm{~m}^{2}
$$

Reading the graph, you can see that $506.25 \mathrm{~m}^{2}$ corresponds to a cost of $\mathbf{\$ 1 1} 000$.

Gordon will buy the turf at the lowest price and therefore he will buy from Company A.

Gordon will pay $\$ \mathbf{9} 112.50$ for the turf.

Suggested Strategies:

Company A:

Turf is sold in SQUARE pieces and the cost depends on the AREA (s^{2})

ASK YOURSELF:

Which kind of function is associated with squaring a number? $\boldsymbol{y}=\boldsymbol{a x} \boldsymbol{x}^{2}$

Substitute (x, y) value and solve for "a". This will give you your rule and you can then substitute and solve for y.

Company B:

Before you can use this graph, you need to calculate the area of the turf Gordon needs.

Additional Resources:

Visions Volume 2, pp. 28-29
Khan Academy video:https://www.khanacademy.org/math/algebra/quadratics/solving graphing quadratics/v/graphing-a-quadratic-function
http://www.purplemath.com/modules/grphquad.htm
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Quadratics in Polynomial Form- Activity A and Activity B (for these, you must keep the band c sliders at position 0)

4.3 Exponential Function

Answer and Solution:

Exponential Function:
$f(x)=a(c)^{x}$
where: a is the initial value and c is the base

Given the value increases, $\mathrm{C}>1$
$2 / 100=0.02$ and then adding it to 1
$C=100 \%+2 \%=102 \%=1.02$
The correct equation is $f(x)=275000(1.02)^{x}$
A) $\quad f(x)=275000(0.02)^{x}$ This would be a decreasing function since the base is less than 1.
B) $\quad f(x)=275000(1.02)^{x}$ This is correct.
C) $\quad f(x)=275000(1.2)^{x} m$ This would represent a growth rate of 20\% not 2\%.
D) $\quad f(x)=275000(0.98)^{x}$ This would represent a decay of 2% (decreasing).

Suggested Strategies:

- Find the type of function for the situation.
- Calculate " c " by using the percentage.
- Remember that in growth situations we add to 100%.

The answer is B.
Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:

The initial value is 505 , not 0.94 .
The bike's value decreases by 6%, not 94%.
This is a decreasing function because 0.94 is less than 1 .
The value of the bike will be $\$ 272$ in the year 2020.
Proof:
2020-2010 = 10 years
$f(10)=505(0.94)^{10}=272$
A) The initial value is 0.94 .

No - the initial value is $\$ 505$.
B) The bike decreases by 94% yearly.

No - the rate at which it decreases is $1-0.94=0.06$, or 6%
C) The graph is an increasing function.

No - since the base is less than one, it is a decreasing function.
D) In the year 2000, the value of the bike will be $\mathbf{\$ 2 7 2}$. Yes:

$$
\begin{aligned}
& 2000-1990=10 \text { years } \\
& f(10)=505(0.94)^{10}=272
\end{aligned}
$$

The answer is D.

Suggested Strategies:

- Determine what the initial value is and compare with A).
- Determine the percentage decrease and compare with B).
- Determine if the function is increasing and compare with C).
- Calculate the number of years from 2010 to 2020 and replace value in x. Compare with D).

Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:

$$
\begin{aligned}
& f(x)=a c^{x} \\
& c=1-0.35=0.65 \\
& f(x)=a(0.65)^{x} \\
& 10.21=a(0.65)^{5} \\
& \frac{10.21}{0.1160}=\frac{0.1160 a}{0.1160} \\
& a=\$ 88.02
\end{aligned}
$$

Suggested Strategies:

- Notice that this is an exponential function that is decreasing.
- Write the equation for this function.
- Calculate the value of " c " which uses the percentage.
- Fill in x with the number of years and y with the price after 5 years.
- Work backwards to find a, the initial price.
- Remember that in decay or decreasing situations we subtract from 100\%.

Answer: The initial price of the video game is $\mathbf{\$ 8 8 . 0 2}$.

Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:				Suggested Strategies:
$137858=4500(1.33)^{x}$				- Replace y by the number of bacteria given. - Work backwards to find the value of x by
OR	x	$4500(1.33)^{x}$	$f(x)$	guess and check.
		$4500(1.33)^{1}$	5985.0	
		$4500(1.33)^{2}$	7960.1	OR
		4500(1.33) ${ }^{3}$	10586.9	
		$4500(1.33)^{4}$	14080.5	- Set up a table of
		$4500(1.33)^{5}$	18727.1	values for the
		$4500(1.33)^{6}$	24907.1	function and find the
		$4500(1.33)^{7}$	33126.4	y value you are
		$4500(1.33)^{8}$	44058.1	looking for.
		$4500(1.33)^{9}$	58597.3	- In the table, you can
		4500(1.33) ${ }^{11}$	77934.4	jump ahead to
		4500(1.33) ${ }^{1 /}$	103652.7	where you think x
		4500(1.33)	137858.1	would work.
		4500(1.33) ${ }^{1:}$	183351.2	- Your table should contain more than
$x=12$ years later				two calculations in order to show
$2005+12=2017$				evidence of your thinking.

Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:

$f(x)=a c^{x}$
$a=$ initial value $=5000$ (principal)
$c=$ growth rate $=1+0.025=1.025$
OR $100 \%+2.5 \%=102.5 \%$ or 1.025
$f(x)=5000(1.025)^{x}$
where:
$x \quad$ is the number of years and
$f(x)$ is the total of principal and interest
$f(10)=5000(1.025)^{10}$
$f(x)=\$ 6400.42$
$6400.42-5000=\$ 1400.42$

Suggested Strategies:

- Notice this is an exponential function and that it is increasing so the base is greater than 1.
- Write the equation associated with the function.
- Substitute the initial value for " a ".
- Determine " c " by using the percentage.
- Recognize that x represents the number of years and y represents the total amount.
- Plug in number of years for " x ".

Answer: Sophia will have made $\mathbf{\$ 1 4 0 0 . 4 2}$ profit in 10 years.

Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:

Amy:
$f(x)=10 x+400$
where:
x is the number of months
$f(x)$ is the total amount of money in the bank
After 5 years ($5 \times 12=60$ months), the total amount is:
$f(60)=10(60)+400=\$ 1000$

Ben:

$$
f(x)=850(1.04)^{x}
$$

where:
x is the number of years
$f(x)$ is the total amount of money in the bank
After 5 years, the total amount is:
$f(5)=850(1.04)^{5}=\$ 1034.15$

The person who will have the most money after 5 years is Ben.

Answer: Ben will have more money after 5 years.

Additional Resources:

Visions Volume 1, pp. 39-41

Answer and Solution:

Town A: constant function
$f(x)=5000$,
where:
x is the number of years elapsed since 1960
$f(x)$ is the total inhabitants.

Town B: exponential function
2020-2001 = 19 years elapsed.
$f(19)=2000(1.022)^{19}=3024$ inhabitants
Town C: linear function
2020-2010 = 10 years elapsed
$f(x)=5000-50(x)$
$f(19)=5000-50(19)=4050$ inhabitants.
Town D : exponential function
For $c=100 \%+5 \%$
= 105\% = 1.05
$a=$ initial population of 1500
$f(x)=a c^{x}$
$f(x)=1500(1.05)^{x}$
$x=2020-2006=14$
$f(14)=1500(1.05)^{14}=2969$ inhabitants
Total:
$5000+3024+4050+2969=15043$ inhabitants

Answer: The population of the new city will be 15043.

Additional Resources:

Visions Volume 1, pp. 39-41

4.4 Step, Periodic and Piecewise Functions

Additional Resources:

Visions Volume 2, Section 4.4, p. 53

Answer and Solution:

Read each statement carefully.

1. A customer that spends $\$ 150$ will receive a $\$ 10$ discount.
False-\$150=\$15 discount
2. A customer that spends $\$ 75$ will receive a $\$ 5$ discount.

True - In values between the endpoints of the step has the same y-value.
3. A customer will receive a $\$ 5$ discount when spending less than \$100.

False - Be careful with the less than $\$ 100$. Less than $\$ 100$ includes less than $\$ 50$. Less than $\$ 50$ equals $\$ 0$ discount.
4. A customer will receive twice as much of a discount when spending $\$ 200$ than $\$ 100$.

True - The discount for $\$ 200=\$ 20$ and $\$ 100=\$ 10$
5. A customer will receive no discount when spending less than \$50.

True - Less than $\$ 50$ is the step on the x-axis.

The answer is A .

Suggested Strategies:

1) "greatest integer function" is another name for step function.
2) Read each statement carefully and determine if it is true or false.
3) When reading the endpoints of the steps know the difference between an open circle and filled in circle.

- A closed point means it is included.
- An open point means it is not included.

4) The question is looking for the true statements. Sometimes the question wants the false statements. Take a moment to highlight the word true and indicate each statement as true or false as you read them.

Additional Resources:

Visions Volume 2, Section 4.4, p. 53

Answer and Solution:

Company A:

$$
\frac{100 \mathrm{gb}}{\$ 20}=\frac{200 \mathrm{gb}}{\$ x} \rightarrow x=\$ 40
$$

OR
We can see the line passing through the origin $(0,0)$ and the given point $(100,20)$
$\$ 20$ per 100 gigabytes
$\$ 0.20$ per 1 gigabyte

The function rule to calculate the cost in relation to the internet usage (gigabyte) will be $f(x)=0.20 x$

The cost of 200 gigabyte $f(200)=\$ 40$

Company B:

From the graph $-\mathrm{f}(200)=\$ 25$
(Note that it isn't $\$ 35$ because it's the solid dot that indicates the y value.)

The difference: $\$ 40-\$ 25=\$ 15$

Answer: The difference in cost is $\mathbf{\$ 1 5}$.

Suggested Strategies:

1) Since we can't read off the graph for the cost of 200 gb from Company A, we need to look further.
-The text says each 100 gb costs $\$ 20$ so we could set up a proportion or

- The graph shows the same information but we can find a unit rate which will be the " a " in $y=a x+b$. b will be 0 since the line goes through the origin.

Recall: ' a ' in the equation represents the slope $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and ' b ' represent the y-intercept. (In this case it is 0 since the line passes through the origin.
2) By looking at the graph we can see the exact value of the cost of Company B at 200 gb. Be careful not to take the $\$ 35$ value.
Remember the difference between a white circle and a black circle.

Additional Resources:

Visions Volume 2, Section 4.4, p. 53

Answer and Solution:

Step 1: Determine the period of the function

5 complete cycles $=400$ seconds 1 complete cycle $=80$ seconds
Step 2: Determine how many complete cycles from 8:00-8:15 AM
Since our unit of time on our graph is in seconds we need to convert minutes to seconds.

15 minutes $\times 60$ seconds/minute $=900$ seconds
Determine the number of complete cycles in 900 seconds

$\frac{900 \text { seconds }}{80 \frac{\text { seconds }}{\text { cycle }}}=11.25$ cycles	
OR	11 Full Cycles means that the ball will return back to where it started (i.e. ground $)$ 0.25 of a cycle represents quarter of a full cycle. (0.25×80 seconds $=20$ seconds $)$

The graph (5 cycles) covers 400 seconds, so 800 seconds covers the graph twice, leaving 100 seconds ($900-800$) left over to being the third time. From reading the graph, you can see that at 100 seconds, the ball is 100 cm above the ground.
HOWEVER, even though it looks like 100, make sure by showing the following:
Step 3: Determine the height the ball is relative to the ground at $\mathbf{2 0}$ seconds
To find the exact value we need to break a cycle into pieces.

80
At 20 seconds the ball will be moving upwards. To know the exact height we will have to find the equation of a line: $y=a x+b$.

We have two points on the line. $P_{1}(0,0)$ and $P_{2}(30,150)$
$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{150-0}{30-0}=\frac{150}{30}=5$ and $b=0$ since the y-intercept is at the origin.
The equation of the line is $y=5 x$
To find the height of the ball at 20 seconds, substitute $x=20$ and solve for y.

$$
y=5(20)=100 \text { centimeters }
$$

The ball is $100 \mathbf{~ c m}$ off the ground when the mascot stops moving.

Suggested Strategies:

1) Determine the period (the length of a full cycle) of the periodic function.

Note: The scale of x-axis is 100/4 = 25 seconds per grid mark.

In this case you cannot determine the exact value of the period from looking at one cycle on the graph. Instead we can see that 5 full cycles equals 400 seconds.
(1 cycle $=80$ seconds)
2) At 8:00 AM the ball starts at ground level and moves for 15 minutes. We need to figure out how many complete cycles we have completed in 15 minutes and see what's left over.
3) Write the equation of a line given two points.

$$
y=a x+b
$$

Recall: ' a ' in the equation represents the slope $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and ' b ' represent the y-intercept.

Additional Resources:

Visions Volume 2, Section 4.4, p. 53

Answer and Solution:

Step 1: Solving for the parameter " a " in the second-degree function
Note: The second-degree function is connected to the constant function. To determine the coordinates of the point connecting the two functions we need to look at the interval in the function rule.

When $x=80$, the y-coordinate is at 256 .
Substitute the coordinates into the second-degree equation to solve for ' a '

$$
\begin{gathered}
a(80)^{2}=256 \\
a=\frac{256}{6400}=\frac{1}{25} \text { or } 0.04
\end{gathered}
$$

Step 2: Solving for parameter " b " in the linear equation.
The function connecting the linear function is the constant function.
When $x=160, y=256$

$$
\begin{gathered}
256=-1.25(160)+b \\
256+200=b \\
b=456
\end{gathered}
$$

The value of parameter a is $\frac{1}{25}$ or 0.04 .
The value of parameter b is 456 .

Additional Resources:

Visions Volume 2 Section 4.4 p. 53
http://www.mathsisfun.com/sets/functions-piecewise.html http://www.purplemath.com/modules/strtlneq.htm

5.1 Trigonometric Ratios

Answer and Solution:

Adjacent side to angle A
Since the opposite and adjacent sides are given, the correct trigonometric ratio to select is Tangent (tan).

Tangent is the ratio of oppositesideof anangle
adjacentsideof anangle
So, $\tan A=\frac{2}{9}$
A) $\frac{9}{2}$ would be $\cot A$ not $\sin \mathrm{A}$
B) $\quad \frac{9}{2}$ would be $\cot A$ not $\tan \mathrm{A}$
C) $\quad \frac{2}{9}$ would be $\tan A$ not $\cos \mathrm{A}$
D) correct

1. Identify the sides according to angle A.
2. Given the "knowns" (opposite and adjacent), select the correct trigonometric ratio.

The answer is D.

Additional Resources:

Visions Volume 2, p. 84
Khan Academy Video: https://www.khanacademy.org/math/trigonometry/basic-trigonometry/ basic trig_ratios/v/basic-trigonometry
http://www.purplemath.com/modules/basirati.htm

Answer and Solution:	Specific Strategies: 1. Consider each ratio one at a time 2. Label sides according to angle D 3. Label sides according to angle F
A) $\cos \mathrm{D}=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{f}{e}$ incorrect	each choice (A, B, C and D).
B) $\quad \tan \mathrm{D}=\frac{\text { opposite }}{\text { adjacent }}=\frac{d}{f}$ incorrect C) $\cos \mathrm{F}=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{d}{e}$ correct D) $\quad \sin \mathrm{F}=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{f}{e}$ incorrect	Don't stop when you think you have the correct answer.
The answer is C .	

Additional Resources:

Visions Volume 2, p. 84
Khan Academy video: https://www.khanacademy.org/math/trigonometry/basic-trigonometry/ basic trig ratios/v/basic-trigonometry http://www.purplemath.com/modules/basirati.htm

hypotenuse

- Length DF is the opposite side and the unknown (x)
- The hypotenuse is given
- Therefore, the correct trigonometric ratio to use is $\operatorname{SIN}(\mathrm{SOH})$

MAKE SURE YOUR CALCULATOR IS IN DEGREES

$$
\begin{gathered}
\sin E=\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin 65=\frac{x}{11.4} \\
x=11.4 \sin \left(65^{\circ}\right)
\end{gathered}
$$

$$
x=10.33
$$

A) This is the result of $\cos 65^{\circ}=\frac{x}{11.4}$ which is incorrect.
B) $\mathbf{1 0 . 3 3 \mathrm { cm }}$ is correct.
C) This is the result of $\sin 65^{\circ}=\frac{11.4}{x}$ which is incorrect.
D) This is the result of $\tan 65^{\circ}=\frac{x}{11.4}$ which is incorrect.

The answer is B.

Looking for an unknown in a right triangle means that you will need to use trigonometric ratios.

Remember: SOH CAH TOA

1. Label sides according to the given angle.
2. Select the appropriate trigonometric ratio (sin, cos or tan).
3. Solve for the unknown.

Additional Resources:

Visions Volume 2, p. 84
Khan Academy video: https://www.khanacademy.org/math/trigonometry/basic-trigonometry/ basic trig ratios/v/example--trig-to-solve-the-sides-and-angles-of-a-right-triangle Explore Learning Gizmos, http://www.explorelearning.com/ look up: Sine, Cosine, and Tangent

Additional Resources:

Visions Volume 2, p. 84; examples on p. 85
Khan Academy video: https://www.khanacademy.org/math/trigonometry/basic-trigonometry/ basic trig ratios/v/example--trig-to-solve-the-sides-and-angles-of-a-right-triangle http://www.purplemath.com/modules/basirati2.htm

Answer and Solution:

- The focus is on triangle TQR
- Triangle TQR is a right triangle because the height is perpendicular to the base.
- The measurement of $Q R$ is $31 \div 2$ because the triangle is isosceles
- Use trigonometric ratios
- The "knowns" are the opposite side and adjacent side to angle R
- The correct trigonometric ratio is Tan (TOA)

Remember to divide RS by two to obtain the value of the adjacent side of angle R. $31 \div 2=15.5$

$$
\begin{aligned}
& \tan R=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan R=\frac{13.1}{15.5} \\
& R=\tan ^{-1} 0.8451 \\
& R=40.2^{0}
\end{aligned}
$$

Specific Strategies:

Which angle is given? or unknown?

Which sides are given?

Looking for an unknown in a right triangle means that you will need to use trigonometric ratios.

Remember: SOH CAH TOA

1. Label sides according to the given angle
2. Select the appropriate trigonometric ratio (sin, cos or tan)
3. Solve for the unknown

The measure of angle R is $\mathbf{4 0 . 2}$.

Additional Resources:

Visions Volume 2, pp. 84-85
Khan Academy video: https://www.khanacademy.org/math/trigonometry/basic-trigonometry/ basic trig ratios/v/example--trig-to-solve-the-sides-and-angles-of-a-right-triangle http://www.purplemath.com/modules/basirati2.htm

Answer and Solution:

$$
\begin{aligned}
& \overline{A B}=2 \times \overline{E B} \\
& =2 \times 8.82 \\
& =17.64 \mathrm{~cm}
\end{aligned}
$$

$\overline{B D}$ is an altitude of triangle $A B C$, so we can use the Pythagorean theorem to find $\overline{A D}$:
$\overline{A D}^{2}+9^{2}=17.64^{2}$
$\overline{A D}=15.17 \mathrm{~cm}$

We can also use metric
relations:
$\overline{A B}^{2}=\overline{A D} \times \overline{A C}$
$17.64^{2}=15.17 \times \overline{A C}$
$\overline{A C}=20.51 \mathrm{~cm}$
$\overline{A C} \times \overline{D B}=\overline{A B} \times \overline{B C}$
$20.51 \times 9=17.64 \times \overline{B C}$
$\overline{B C}=10.46 \mathrm{~cm}$

Area $=\frac{\text { base } \times \text { height }}{2}$
$=\frac{10.46 \times 17.64}{2}=$
$91.32 \mathrm{~cm}^{2}$

Specific Strategies:

Break the image down into two right triangles: $A B C$ and $B E F$. Determine the area of each and then add them.

Area $=\frac{\text { base } \times \text { height }}{2}$

Formulas that may apply to right triangles:

- Pythagorean theorem
- Trigonometric ratios
- Metric relations

Total area $=53.54 \mathrm{~cm}^{2}+91.32 \mathrm{~cm}^{2}=144.86 \mathrm{~cm}^{2}$

Additional Resources

Visions Volume \qquad Section 3.3, pp. 178-185
Visions Volume \qquad Section 5.1, pp. 91-101

5.2 Finding Missing Measurements

Answer and Solution:
(28

$$
\begin{aligned}
& \tan x=\frac{28}{10} \\
& \quad x=\tan ^{-1}(2.8)=70.3^{\circ} \\
& ?=180^{\circ}-2\left(70.3^{\circ}\right) \\
& =39.4^{\circ}
\end{aligned}
$$

(You may instead get the result 39.3° which would be correct.)
A) Incorrect. Did $\tan x=\frac{10}{28}$ and forgot to subtract from 180°.
B) Correct answer.
C) Incorrect. Forgot to subtract from 180°.
D) Incorrect. Did $\tan x=\frac{10}{28}$ and subtracted from 180°.

Suggested Strategies:

- Identify the triangles that you see - two right triangles and an isosceles triangle.
- Determine if the two right triangles are the same. (they are by SAS - the two legs and the right angles)
- Since you know the lengths of two sides of the right triangle, you can use a trig ratio to find the angle(s)
- You know that the sum of the angles along the side of the rectangle measuring 20 must add up to 180.
- Find x and subtract that twice from 180 and you'll get the measure of the missing angle.

The answer is B.

Additional Resources:

Visions Volume 1 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:		Suggested Strategies:
	$\tan \mathrm{A}=\frac{3}{10}$	- Look at the illustration and find the right triangle(s) you should see the two (implied) right triangles in the obtuse triangle of the flap.
	$\begin{aligned} & \angle A=\tan ^{-1}\left(\frac{3}{10}\right) \\ & \angle A=16.7^{\circ} \end{aligned}$	- Since the 3 cm goes down the center, the top can be divided into 10 cm and 10 cm and you have two
A)	Correct Answer.	right triangles. - (Notice that the 7 cm
	Incorrect. Used $\sin \frac{3}{10}$ instead of $\tan \frac{3}{10}$.	measure is extra information that you
	Incorrect. Used $\tan \frac{7}{20}$ instead of $\tan \frac{3}{10}$.	don't need.) - Now you're ready to
D)	Incorrect. Used $\sin \frac{7}{20}$ instead of $\tan \frac{3}{10}$.	choose a trig ratio to solve for the missing angle. Tangent is what works in this case.
		- Turn your paper around if the orientation of the triangle is confusing.

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and
Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles
topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:
C) $119.4 \mathrm{~m}^{2}$

$\tan 43^{\circ}=\frac{\mathrm{h}}{16}$
$0.19325=\frac{h}{16}$
$\mathrm{h}=16 \times 0.9325$
$\mathrm{h}=14.92 \mathrm{~m}$
$A=\frac{16 \times 14.92}{2}=119.4 \mathrm{~m}^{2}$
2
A) Incorrect. $\operatorname{Sin} 43^{\circ}$ was used instead of $\tan 43^{\circ}$.
B) Incorrect. $\operatorname{Cos} 43^{\circ}$ was used instead of $\tan 43^{\circ}$.
C) Correct answer.
D) Incorrect. $\operatorname{Tan} 47^{\circ}$ was used instead of $\tan 43^{\circ}$.

Suggested Strategies:

- Finding the area of a triangle means we need either the measure of all three sides (and use Hero's formula) or we need a base and its height.
- Here we have one side and an angle...in a right triangle so trig ratios can be used to find the measures of missing sides.
- If we consider the 16 m side as the base, the height is opposite the 43° angle.
- Tangent is the trig ratio to use in this case.

The answer is C .

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:

Difference in height between the bird nests $=0.43 \mathrm{~m}$

Pole A	Pole B
$\cos 8^{\circ}=\frac{\text { Height }_{A}}{11.5}$	$\cos ^{\circ}=\frac{\text { Height }_{B}}{11}$
$0.990=\frac{\text { Height }_{A}}{11.5}$	$0.996(11)=$ Height $_{B}$
Height $_{\mathrm{A}}=11.39 \mathrm{~m}$	Height $_{B}=10.96 \mathrm{~m}$

Difference is $11.39-10.96=\underline{0.43 \mathrm{~m}}$

Suggested Strategies:

- Before you can find the difference in the heights of the bird nests, you need to find the height from the ground of each one.
- Height is a vertical distance so the height of each nest will be less than the length of the poles.
- You will have to identify right triangles and their elements before you can use trig ratios to solve for the missing measure.

The difference in height between the two bird nests is $\underline{0.43} \mathrm{~m}$.

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:

$$
\begin{gathered}
\sin 30^{\circ}=\frac{x}{18} \\
0.5=\frac{x^{18}}{18} \\
x=0.5 \times 18=9 \mathrm{~m}
\end{gathered}
$$

$y=\tan ^{-1}\left(\frac{10}{20}\right)$
$y=\tan ^{-1}(0.5)$
$y=26.6^{\circ}$
or the length of the side opposite a 30° angle in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is $1 / 2$ the length of the hypotenuse

Suggested Strategies:

- Determine what you need to know about the left triangle in order to find the missing angle measure.
- Either the hypotenuse (the length of the guy wire),
- the other angle or
- the height up the flagpole of the other guy wire.
- We only have enough information to find the last option.

The angle of inclination of the left guy wire is 26.6°.

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:

Use Sine Law to find $m \angle P Q R$

$$
\begin{gathered}
\frac{p}{\sin P}=\frac{q}{\sin Q}=\frac{r}{\sin R} \\
\frac{12}{\sin 42^{\circ}}=\frac{15}{\sin Q} \\
\sin Q=\frac{15 \cdot \sin 42^{\circ}}{12} \\
\sin Q=0.8364132579
\end{gathered}
$$

Find the inverse of Sine, use

$$
\sin ^{-1}(0.8364132579)=56.733^{\circ}
$$

Extra step - since we are looking for an obtuse angle...

$$
\begin{gathered}
\sin Q=\sin \left(180^{\circ}-Q\right) \\
\sin \left(56.7633^{\circ}\right)=\sin \left(180^{\circ}-56.7633^{\circ}\right) \\
180^{\circ}-56.7633^{\circ}=123.2367^{\circ}
\end{gathered}
$$

Suggested Strategies:

- Since this is not a right triangle, you cannot use SOH CAH TOA
- Don't forget that when you use Sine Law to determine the measure of an obtuse angle, you must subtract your answer from 180.

The measure of $\angle P Q R$ is 123°.

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and
Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:

Height of kite where the string is attached is
$60 \mathrm{~m}-2 \mathrm{~m}=58 \mathrm{~m}$

Sally is holding the string one meter up so height for calculation is 58 $-1=57 \mathrm{~m}$

Length of string originally:

$$
\begin{aligned}
& \sin 55^{\circ}=\frac{57}{l_{1}} \\
& 0.8191=\frac{57}{l_{1}} \\
& l_{1}=\frac{57}{0.8191}=69.58 \mathrm{~m}
\end{aligned}
$$

Length of string after the wind shift:

$$
\begin{aligned}
& \sin 40^{\circ}=\frac{57}{l_{2}} \\
& 0.6428=\frac{57}{l_{2}}
\end{aligned}
$$

$$
l_{2}=\frac{57}{0.6428}=88.68 \mathrm{~m}
$$

$88.68-69.58=19.1 \mathrm{~m}$

Sally had to let out an additional 19.1 m of string to maintain the height of the kite.

Suggested Strategies:

- The tricky part of this question is trying to imagine what exactly is happening.
- From the diagram, you can probably see that triangles are involved; sketch them separately in a way that will make it easier to see how to set up the trig ratios
- Recognize that the string is the hypotenuse of these triangles and get the feel that the hypotenuse will be longer if the angle is smaller.
- Now figure out the two lengths and find the difference.

Additional Resources:

Visions Volume 2 p. 95 (Mathematical Knowledge Summary)
Explore Learning Gizmos, http://www.explorelearning.com/ look up: Proving Sine, Cosine and Tangent
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/ccgeometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

5.3 Calculating the Area of any Triangle

Answer and Solution:

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{c}{\sin C} \\
\frac{12}{\sin A}=\frac{15}{\sin 98} \\
12(\sin 98)=15 \sin A \\
\sin A=0.79 \\
A=52.39^{\circ}
\end{gathered}
$$

A) $\quad 52.4^{\circ}$; Correct Answer.

B) $\quad 38.7^{\circ}$; Did not use sine law, used $\tan C A B=\frac{a}{c}$ instead.
C) $\quad 53.1^{\circ}$; Did not use sine law, used $\sin C A B=\frac{a}{c}$ instead.
D) $\quad 36.8^{\circ}$; Did not use sine law, used $\cos C A B=\frac{a}{c}$ instead.

Specific Strategies:

- Notice that this is not a right angle $\left(90^{\circ}\right)$ triangle.
- You cannot apply SOH, CAH, TOA.
- You should use Sine law.
- Color code, highlight or match the angles with their corresponding sides.
- Apply Sine law formula.

The answer is A .

Additional Resources:

Visions Volume 2, Section 5.3, p. 108
Khan Academy video: https://www.khanacademy.org/math/trigonometry/less-basic-trigonometry/law-sines-cosines/v/law-of-sines Law of Sines

Answer and Solution:

$$
\begin{aligned}
& p=\frac{(a+b+c)}{2} \\
& p=\frac{(21+18+15)}{2}=27
\end{aligned}
$$

$$
A=\sqrt{p(p-a)(p-b)(p-c)}
$$

$$
A=\sqrt{27(27-21)(27-18)(27-15)}
$$

$$
A=\sqrt{27(6)(9)(12)}
$$

$$
A=132.3 \mathrm{~m}^{2}
$$

$$
\text { Area }=132.3 \mathrm{~m}^{2}
$$

A) $\quad 7.35 \mathrm{~m}^{2}$; added the values under the radical
B) $\quad 25.5 \mathrm{~m}^{2}$; Forgot to multiply everything by p under the radical.
C) $\quad 132.3 \mathrm{~m}^{2}$; Correct Answer
D) $\quad 187.1 \mathrm{~m}^{2}$; Multiplied everything by the perimeter instead of the half perimeter

Specific Strategies:

Identify the values of a, b and c according to the diagram provided.

Calculate the value of the half perimeter.

Substitute the values for a, b, c, and p in Hero's formula.

The answer is C.

Additional Resources:

Visions Volume 2, Section 5.3, p. 108
Khan Academy video: https://www.khanacademy.org/math/geometry/basic-geometry/heron
formulatutorial/v/ heron-s-formula Heron's Formula

Answer and Solution:

Knowing that angle C is 55°, that side C has a length of 10 and side b a length of 7, we can calculate the size of angle B using sine law.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

To solve the problem, we need three of the four values in any given equality. Since we know b, c and sin C, then:

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Rearranging the equation we get:

$$
\sin B=\frac{b \sin C}{c}
$$

Substituting the corresponding values, we get:

$$
\sin B=\frac{7 \sin 55^{\circ}}{10}
$$

$$
\sin B=0,573406431
$$

Finding the inverse of $\sin , \sin ^{-1}$, we can get the measure of the angle:

$$
\begin{gathered}
B=\sin ^{-1} 0,573406431 \\
B=35^{\circ}
\end{gathered}
$$

Specific Strategies:

- Notice that this is not a right angle (90°) triangle
- You cannot apply SOH, CAH, TOA
- You should use Sine law
- Color code, highlight or match the angles with their corresponding sides
- Apply Sine law formula

Answer: Angle B $=35^{\circ}$

Additional Resources:

Visions Volume 2, Section 5.3, p. 103 (Activity 1: Sine Law)
Khan Academy video: https://www.khanacademy.org/math/trigonometry/less-basic-trigonometry/law-sines-cosines/v/law-of-sines Law of Sines

Answer and Solution:

Before starting with Hero's formula, we must first determine the halfperimeter p of the triangle.

Since $p=\frac{(a+b+c)}{2}$
where $a=7, b=5$ and $c=6$
we know that $p=\frac{(7+5+6)}{2}=9$
Now using the formula we get:

$$
\begin{aligned}
& A=\sqrt{p(p-a)(p-b)(p-c)} \\
& A=\sqrt{9(9-7)(9-5)(9-6)} \\
& A=\sqrt{9(2)(4)(3)} \\
& A=14.7 \\
& \text { Area }=14.7
\end{aligned}
$$

Specific Strategies:

Identify the values of a, b and c according to the diagram provided.

Calculate the value of the half perimeter.

Substitute the values for a, b, c, and p in Hero's formula.

The answer is 14.7 units 2.

Additional Resources:

Visions Volume 2 Activity 2 p. 105 and Mathematical Knowledge p. 108
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/cc-geometry-trig/v/basic-trigonometry Sine, Cosine and Tangent Trigonometric Functions

Answer and Solution:

Knowing that angle B is 53°, that side b has a length of 6 and angle C is 70°, we can calculate the length of side c using sine law.

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

To solve the problem, we need three of the four values in any given equality. Since we know $b, \sin B$ and $\sin C$, then:

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Rearranging the equation we get:

$$
c=\frac{b \sin C}{\sin B}
$$

Substituting the corresponding values, we get:

$$
\begin{gathered}
c=\frac{6 \sin 70^{\circ}}{\sin 53^{\circ}} \\
c=7.06
\end{gathered}
$$

Since side c corresponds to $A B$, the length of segment $A B$ is 7.06 .

Answer: the length of segment $A B$ is 7.06 .

Additional Resources:

Visions Volume 2, Section 5.3, p. 103 (Activity 1: Sine Law)
Khan Academy video: http://www.khanacademy.org/math/geometry/right triangles topic/cc-geometry-trig/v/basic-trigonometry Sine, cosine and tangent trigonometric functions

Apply Sine law to find c.

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{c}{\sin C} \\
\frac{353}{\sin 30}=\frac{c}{\sin 130} \\
c=541 \mathrm{~m}
\end{gathered}
$$

Apply trig to find $\overline{A D}$ (height of Space Needle).

$$
\begin{aligned}
& \sin 20=\frac{\overline{A D}}{541} \\
& \overline{A D}=185 \mathrm{~m}
\end{aligned}
$$

\checkmark Yes, his estimation is correct.
\square No, his estimation is not correct.

Reason: The clinometer measures yield a height of 185 m for the Space Needle. This falls within Phil's estimation of 182 m to 188 m .

Specific Strategies:

1. Find all the missing angles you can
2. Notice triangle ABD is a right angle triangle composed of two other triangles
3. Triangle $A B C$ is not a right angle triangle. So, apply Sine law
4. Triangle ACD is a right angle triangle. So, apply SOH, CAH TOA

Additional Resources:

Visions Volume 2, Section 5.3, p. 103 (Activity 1: Sine Law)
Khan Academy video: https://www.khanacademy.org/math/trigonometry/less-basic-trigonometry/law-sines-cosines/v/law-of-sines Law of Sines

6.2 Subjective Probability and Odds

Answer and Solution:

A) is theoretical probability.
B) is experimental/empirical probability.
C) is experimental/empirical probability.
D) is subjective probability.

The answer is D .
Additional Resources:

Visions Volume 2, p. 152

Answer and Solution:

"Odds for" is the ratio of favorable outcome to unfavorable outcomes. (favorable : unfavorable)

Favorable means the outcome you are looking for and unfavorable refers to all other outcomes.

We have one 4 on a die and five other numbers which are not 4, therefore the odds for rolling a 4 are 1:5.
A) 5:1 odds against rolling a 4
B) 1:5 odds for rolling a 4
C) 1:6 probability of rolling a 4
D) $5: 6$ probability of not rolling a 4

The answer is B.

Additional Resources:

Visions Volume 2, p. 153

Answer and Solution:
$30 \%=\frac{30}{100}=\frac{3}{10}=\frac{\text { favorable }}{\text { total }}$
$\begin{aligned} & \text { Unfavorable }=\text { total }- \text { favorable } \\ & =10-3 \\ & =7 \end{aligned}$

"Odds against" is the ratio
unfavorable : favorable \rightarrow 7:3

Answer: The boxer's odds against winning are 7:3.
Additional Resources:

Visions Volume 2, p. 153

Answer and Solution:	Suggested Strategies:
$\frac{4}{5}=\frac{12}{x}$ $x=\$ 15$ $\$ 15$ win $+\$ 12$ bet $=\$ 27$ remittance	- Determine the proportion for calculating bets. - Solve for the missing term. - Don't forget the initial amount he bets. - Don't forget the amount he initially bets.

Additional Resources:

Visions Volume 2, p. 153

Answer and Solution:

Odds for blue is the ratio
favoring blue : against blue
1 : 4

The probability of drawing a blue marble is :

$$
\frac{\text { favoring blue }}{\text { total }}=\frac{1}{1+4}=\frac{1}{5}
$$

$$
\frac{1}{5}=\frac{x}{20}
$$

$x=4$ blue marbles
$20-4=16$ yellow marbles

Suggested Strategies:

- Relate the given "odds" with a probability so that you can determine the number of blue marbles, and from there, the number of yellow marbles.

Answer: There are 16 yellow marbles in the bag.
Additional Resources:

Visions Volume 2, p. 153

6.3 Mathematical Expectation

Answer and Solution:

Expected value $=\left(\mathrm{P}_{1} \times \mathrm{O}_{1}\right)+\left(\mathrm{P}_{2} \times \mathrm{O}_{2}\right)$

$$
=\frac{2}{6}(10)+\frac{4}{6}(-5)=0
$$

Because the expected value is 0 , the game is fair.

The answer is B.

Additional Resources:

Visions Volume 2, p. 164

Answer and Solution:

Expected gain $=\left(\mathrm{P}_{1} \times \mathrm{O}_{1}\right)+\left(\mathrm{P}_{2} \times \mathrm{O}_{2}\right)$

$$
=\frac{10}{25}(5-8)+\frac{15}{25}(10-8)=0
$$

A) -1 - if you mix up the probabilities
B) $\mathbf{0}$ correct
C) 5 - if you mix up the probabilities and not consider the cost to play
D) 8 - if you don't consider the cost to play

The answer is B.

Additional Resources:

Visions Volume 2, p. 164

Additional Resources:

Visions Volume 2, p. 164
Answer and Solution:

outcome	cost	price	profit	probability	profit x probability
			O_{i}	P_{i}	$O_{i} \times P_{i}$
service company	$\$ 300$	$\$ 550$	$\$ 250$	50.0%	$\$ 125$
retail store	$\$ 300$	$\$ 650$	$\$ 350$	45.5%	$\$ 159.25$
employee	$\$ 300$	$\$ 500$	$\$ 200$	1.0%	$\$ 2$
give away	$\$ 300$	$\$ 0$	$-\$ 300$	0.5%	$-\$ 1.5$
defective	$\$ 300$	$\$ 0$	$-\$ 300$	3.0%	$-\$ 9$
total				100.0%	$\$ 275.75$

If there will be 1000000 phones produced, the expected profit would be $\$ 275.75 \times 1000000=\$ 275750000$.

OR
Expected Profit $=\left(\mathrm{P}_{1} \times \mathrm{O}_{1}\right)+\left(\mathrm{P}_{2} \times \mathrm{O}_{2}\right)+\left(\mathrm{P}_{3} \times \mathrm{O}_{3}\right)+\left(\mathrm{P}_{4} \times \mathrm{O}_{4}\right)+\left(\mathrm{P}_{5} \times \mathrm{O}_{5}\right)$
$=(0.5 \times 259)+(0.445 \times 350)+(0.01 \times 200)+(0.005 \times-300)+(0.03 \times-300)$
$=275.75 /$ phone $\times 1 \times 10^{6}=275750000$

Suggested Strategies:

- These types of problems lend themselves very well to creating tables to keep track of all the subscripts in the formula.
- Identify outcomes not just what they are but the result (in this case, where the phones get sold determine the profit for those phones.)
- Identify probabilities of each outcome
- Remember that the formula would give you the expected value for one phone don't forget to multiply by the number of phones.

The company's expected profit for next year is \$275 $\mathbf{7 5 0} 000$.
Additional Resources:

Visions Volume 2, pp. 163-164

Answer and Solution:

There are 5 possible outcomes:
Picking a ball with 1 on it - which means -2 gain
Picking a ball with 2 on it - which means -1 gain
Picking a ball with 3 on it - which means 0 gain
Picking a ball with 5 on it - which means +2 gain
Picking a ball with 6 on it - which means +3 gain
... because it costs $\$ 3.00$ to play
The probability of each outcome is determined by how many of the 9 balls have that number on them.

$$
P(1)=2 / 9 \text { because there are } 2 \text { balls with a } 1
$$

$P(2)=2 / 9$ because there are 2 balls with a 2
$P(3)=3 / 9$ because there are 3 balls with a 3
$P(5)=1 / 9$ because there is 1 ball with a 5
$P(6)=1 / 9$ because there is 1 ball with a 6
$P_{1} \times\left(O_{1}\right)+P_{2} \times\left(O_{2}\right)+\cdots=$ expected value
$P(1) \times(-2)+P(2) \times(-1)+P(3) \times(0)+P(5) \times(2)+P(6) \times(3)=E V$
$\frac{2}{9} \times(-2)+\frac{2}{9} \times(-1)+\frac{3}{9} \times(0)+\frac{1}{9} \times(2)+\frac{1}{9} \times(3)=E V$
$\frac{-4}{9}+\frac{-2}{9}+\frac{0}{9}+\frac{2}{9}+\frac{3}{9}=E V$
$\frac{-4}{9}+\frac{-2}{9}+\frac{0}{9}+\frac{2}{9}+\frac{3}{9}=E V$
$\frac{-1}{9}=E V$

outcome	gain	probability	gain x probability
Number on the ball	O_{i}	P_{i}	$O_{i} \times P_{i}$
1	$-\$ 2$	$2 / 9$	$-4 / 9$
2	$-\$ 1$	$2 / 9$	$-2 / 9$
3	$\$ 0$	$3 / 9$	$0 / 9$
5	$\$ 2$	$1 / 9$	$2 / 9$
6	$\$ 3$	$1 / 9$	$3 / 9$
total		$9 / 9$	$\mathbf{- 1 / 9}$

Conclusion: since the expected value is negative, this game is not in the participant's favour.
\square Frank is correct.
区 Sue is correct.

Suggested Strategies:

Some of the key words:

- Game
- Random
- Fair
- Buying tickets
- Won

This is an expected value question.
What you need:

- All the possible outcomes
- The probability of each outcome

Things to check:

- Make sure all your probabilities add up to 1
- Make sure you have one term for each outcome (in this case 5)
- Make sure some of your terms are negative and some are positive
- Make sure you come to the correct conclusion; a "negative gain" is a "loss"
- You can also set up your solution in a table.

Note, that you can 'guess' this answer by checking one of the boxes, but you won't get credit for the guess - you have to show your reasoning in order to get marks.

Additional Resources:

Visions Volume 2, pp. 163-164

